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Abstract—Next-generation networks are expected to provide
higher data rates and ultra-low latency in support of demanding
applications, such as virtual and augmented reality, robots and
drones, etc. To meet these stringent requirements of applications,
edge computing constitutes a central piece of the solution archi-
tecture wherein functional components of an application can be
deployed over the edge network to reduce bandwidth demand
over the core network while providing ultra-low latency commu-
nication to users. In this paper, we provide solutions to resource
orchestration and management for applications over a virtualized
client-edge-server infrastructure. We investigate the problem of
optimal placement of pipelines of application functions (virtual
service chains) and the steering of traffic through them, over a
multi-technology edge network model consisting of both wired
and wireless millimeter-wave (mmWave) links. This problem is
NP-hard. We provide a comprehensive “microscopic” binary
integer program to model the system, along with a heuristic
that is one order of magnitude faster than optimally solving
the problem. Extensive evaluations demonstrate the benefits of
orchestrating virtual service chains (by distributing them over the
edge network) compared to a baseline “middlebox” approach in
terms of overall admissible virtual capacity. Moreover, we observe
significant gains when deploying a small number of mmWave links
that complement the Wire physical infrastructure in high node
density networks.

Index Terms—Application Decomposition, Computer Network
Management, Network Optimization, Softwarized Networks,
Software-Defined Networking, Virtual Functions.

I. Introduction
Next-generation mobile networks are expected to go beyond

the delivery of static or streaming content, such as telephony,
web browsing, and low-resolution video. They should be
capable of serving many billions of users and smart devices at
much higher data rates (over 500 Mbps) and ultra-low latencies
(less than five milliseconds) [1]–[3]. Potential next-generation
mobile network applications include robots and drones, virtual
and augmented reality, healthcare, etc. Traditional network
and application architectures can not support these stringent
application requirements. Advances in the physical network
infrastructure, e.g., the integration of Gigabit Ethernet and
millimeter wave (mmWave) technologies, and the virtualization
of network and application functions are key to achieving these
next-generation mobile network goals [1]–[3].
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The virtualization of network functions, termed Network
Function Virtualization (NFV), aims to decouple network
software from proprietary, dedicated hardware appliances,
termed “middleboxes” (e.g., traffic shapers, Network Address
Translation boxes). Similarly, application virtualization allows
an application to work in an isolated virtualized environment.
Moreover, in cloud-based or service-oriented application archi-
tectures, an application can be composed of many application
components, where each component can run as a Virtual
Function (VF). Thus, under application service virtualization,
multiple VFs can run on any general-purpose computer within
a virtual machine, in an operating system container, or as a
serverless “Function as a Service” (FaaS). The flexibility with
which VFs can be deployed and managed — i.e., chained, allo-
cated resources, migrated — allows their hosting “close” to the
users, in an edge cloud/datacenter, thus meeting the application
requirements of ultra-low latency and high throughput.

Figure 1a illustrates the evolution of cellular networks,
where network services are moved from radio base stations
and gateways into the edge cloud. In a traditional LTE archi-
tecture, user traffic traverses a series of devices on its way to
the application server: the base station (eNodeB), a serving
gateway (S-GW), and finally a packet data network gateway
(P-GW) that connects to the outside world. On the other
hand, in a virtualized environment, these network functions are
envisioned to run virtualized, anywhere on the edge resources.
They are chained together in a particular order based on
processing requirements — in Figure 1a example, (eNode,
S-GW, P-GW). To steer traffic across these VFs, Software
Defined Networking (SDN) mechanisms are leveraged so that
routes are established programmatically between components
of the service chain.

Applications running on the edge network can also have
different service chain requirements (e.g., Authentication, Pro-
cessing, Caching in Figure 1), and multiple application flows
may need to use the same VF. Thus, understanding where to
place VFs, or instances of the same VF, that are necessary
to satisfy service chain requirements of different application
flows, subject to physical resource (host and network) con-
straints, is a challenging problem. Furthermore, an edge net-
work may consist of multiple link technologies, e.g., Ethernet
and mmWave, that may have different characteristics suitable
for possibly different types of application flows.
Our Contribution: In this paper, leveraging optimization the-
ory, we investigate the joint placement of virtual service chains
consisting of virtual application functions (components) and
the steering of traffic through them, over a multi-technology
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Figure 1: Application Function virtualization for next generation mobile network

edge network model consisting of both wired and mmWave
links. Our contributions in this work are:
• We propose a detailed “microscopic” binary integer program

(BIP) to find the optimal placement of virtual functions.
• BIP is NP-hard (i.e., computationally expensive), so we

provide a heuristic that is one order of magnitude faster than
BIP.
• Our workload model captures virtual service chains that

correspond to the needs of future applications described as
“killer applications” (i.e., virtual and augmented reality) over
the edge network.
• Extensive evaluation results demonstrate the benefits of
managing virtual service chains (by distributing them over the
edge network) compared to a baseline “middlebox” approach
(where all functions are run on one host).
• We observe significant gains when deploying mmWave links
that complement the wired physical infrastructure. Moreover,
most of the gains are attributed to only 30% of these mmWave
links, which indicates that judicial placement of mmWave
links is key for maximum gains.
• We show that the gains are highest in the high node-density
networks, where mmWave links can be easily established
between the nodes.
• To the best of our knowledge, this is the first work to study
a multi-technology based edge infrastructure envisioned for
next generation mobile networks. The developed model can
be used by the “service” provider to allocate resources to
service chains optimally, and by the “infrastructure” provider
to understand the benefits of deploying mmWave links.
This paper extends our initial work published in [4]. In

particular, we substantially revise and expand the evaluation
results to include edge network topologies that are typical of
edge city networks, namely those whose main structure is a
bus or a ring. We also analyze the impact of the formation of
mmWave links given the density of the network nodes.
Paper Organization: The paper is organized as follows: Sec-
tion II & III provides a background and reviews related work.
Section IV describes our system model. Section V explains our
mathematical formulation. Section VI presents our evaluation

model, parameters and proposed heuristic. Results are shown
in Section VII. Section VIII concludes the paper.

II. Background

This section provides a review of the industry’s direction to
support high data rate and ultra-low latency applications on
next-generation mobile networks. According to “IMT-2020”,
a program developed by the International Telecommunication
Union’s Radiocommunication Sector (ITU-R), the peak data
rates are expected to be around 10 Gbits/s, while end-to-
end latency is expected to be less than 5 ms [5]. To meet
these strict requirements, there is a need for changes in the
infrastructure (e.g., using millimeter wave) and for having
elasticity in hosting virtual functions (VFs) at the edge of
the network. Users accessing application servers hosted in the
public network experience average delays of 50-100ms, while
such applications hosted in the operator’s cloud experience
delays ranging from 20-50ms. However, these delays are still
significantly higher than those expected from a network that
supports future applications. To meet the strict requirements
of network applications for delays of 1-5 ms, the edge com-
puting paradigm that places computation closer to end-users
is necessary [1], [2]. As an example, Telefonica, one of the
world’s largest telecom operator, is using their central offices
(COs) as datacenters (COdc). These COdc are closer to the
end-users (at the network edge) and are capable of hosting
user VFs [6].

Figure 1a shows the case where service-chain components
are running as virtualized functions at the edge of the network.
Here, all the traffic from users passes through Authentication,
Processing, and Caching, which are running at the edge of
the network, before arriving at the Application Server. Note
that the operator’s network services (e.g., S-GW and P-GW),
which are part of the Evolved Packet Core (EPC), can also
be virtualized and hosted in the edge datacenter, as shown in
Figure 1a. However, in this work, we are specifically study-
ing virtual functions for applications running on the mobile
network. The internal functional split of the Radio Access
Network, and virtual EPCs is beyond the scope of this work.
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Figure 1b shows an example of an edge network, consisting
of processing nodes (P1-P3) and routing/switching nodes (R1-
R4). This edge network covers a small geographical area, e.g.,
a medium-size city. As the name suggests, processing nodes
have the processing power and can host VFs, while routing
nodes are responsible for routing traffic through the network.
Note that a processing node can also act as a routing node.
All the nodes are SDN enabled and can be programmed for
traffic routing. The nodes are connected with two different
link technologies, namely Wire and millimeter wave (mmWave)
links. The mmWave technology is considered an important
aspect of next-generation mobile networks. The enormous
amount of spectrum available in the mmWave band, and the
ease and flexibility of deploying a mmWave infrastructure, will
greatly increase the network capacity, as well as decrease
latency when mmWave links are used to create shortcuts
between nodes [7].

Application service components are hosted at processing
nodes. These components run as VFs and are dynamically
instantiated, migrated, or removed from the network based
on the system requirements. Applications have strict require-
ments for their traffic to traverse virtualized services in a
certain order, e.g., authentication followed by caching. This
is known as “Service Function Chaining” (SFC). SFC is an
important capability of virtualized networks as it provides
both modularity and elasticity. A single function in a service
chain can be dynamically changed/updated without having
any impact on other functions. The efficient placement of
virtualized functions and traffic steering through service chains
are challenging problems.

III. RelatedWork

This section reviews some of the most prominent research
work on function placement and traffic steering. The problem
of placement of functions deals with the efficient instantiation
of virtual function (VF) instances on processing nodes and
routing traffic through them in a particular order, such that
the overall cost is minimized and the demand of the system
is satisfied. The problem of allocating resources in cloud
providers is well-studied [8]–[15]. Goudarzi and Pedram [8]
study the allocation of resources in multi-tier cloud providers
based on SLA requirements. Gupta et al. [9] propose the P-
ART framework for placing virtual network services in multi-
cloud systems such that the service requirements are met. Su
et al. [10] consider the affinity and conflict-aware placement
of virtual machines in heterogeneous data centers. Pires and
Barán [11] solve the virtual machine placement problem using
a multi-objective formulation. Our work is different in that
we look at the application VF placement, where applications
have chains of functions that need to be placed on possibly
multiple cloud nodes, and the order of flow traversal needs
to be preserved. Unlike traditional function placement in
clouds, these applications have strict service chaining and
end-to-end performance requirements. Furthermore, different
application flows have additional service chain requirements.
Thus, a virtual service graph with resource requirements is
created for each flow. This graph is embedded in a virtualized

physical infrastructure, as shown in Figure 1a. The task of
creating and deploying virtual service chains is similar to
the Virtual Network Embedding (VNE) problem for Virtual
Network Functions (VNF) [16], [17]. VNF orchestration is a
widely studied topic, and different VNF placement schemes
have been proposed [18], [19]. Similar to VNF placement,
the application VF placement problem is NP-hard. VNF
placement approaches can be divided into the following three
main categories.

1) Mathematical Optimizations: In this approach, the prob-
lem is formulated as a mathematical optimization problem and
solved using different optimization algorithms [12]–[14], [18]–
[22]. These formulations have an objective function, and the
aim is to maximize or minimize the objective while satisfying
the constraints. Qazi et al. [23], and Moens and Turck [24],
aim to minimize the number of VNF instances being deployed.
Mohammadkhan et al. [25] aim to minimize the total number
of CPU cores used in cloud providers. Lin et al. [26] minimize
the usage cost of cloud nodes. Gupta et al. [27], and Botero and
Hesselbach [28], aim to minimize network resource costs, such
as minimize energy consumption and total network bandwidth
being used. Other works aim to maximize performance, such
as minimize flow latencies [19] and minimize the maximum
link utilization in the network [29]. Moreover, VNF placement
algorithms model different aspects of the network. These
include modeling the link capacities, link latencies, end-
to-end flow delays, limits on the number of SDN routing
rules in the switches, splitting/non-splitting of flows, and
processing/storage capacities of nodes [23]–[26]. Tomassilli
et al. [12] show that the VNF placement problem can be
viewed as a set cover problem and proposes logarithmic factor
approximation algorithms. Tajiki et al. [13] provide an Integer
Linear Programming (ILP) formulation to solve the VNF
placement and traffic steering problem. Other approaches use
variations of ILP to solve this problem [30], [31]. Agarwal et
al. [21] propose a queuing-based model. Since the problem of
placement and routing is NP-hard, these techniques are too
slow to converge for most real-world networks. To solve the
problem in a reasonable time, different techniques are used
to obtain sub-optimal solutions quickly. Qazi et al. [23] use
linear programming relaxation for routing while optimizing
function placement. Gupta et al. [27] find K shortest paths
through processing nodes and optimizes the VNF placement
along these paths. The most widely used approach to solving
this problem in a reasonable time is using heuristic algorithms,
which we describe next.

2) Heuristics: To deal with the time inefficiency of Math-
ematical Optimization based solutions, heuristic approaches
are used. However, heuristics provide no guarantee on the
quality of the solution. Mohammadkhan et al. [25] use a multi-
step greedy heuristic for function placement. Nguyen et al.
[14] present an approximate algorithm for large scale problem
instances that applies iterative rounding and variable fixing
techniques to find the solution.

Khebbache et al. [32] propose an algorithm which makes
use of multi-stage graph construction and max-flow to effi-
ciently place VNFs. Leivadeas et al. [33] use a meta-heuristic
algorithm based on Tabu search for VNF placement with the
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goal of minimizing the end-to-end communication delays, and
deployment costs. Even though heuristics give sub-optimal
solutions, it is the most popular approach for real-world
applications and has been widely adopted.

3) Machine Learning (ML): Recently, several studies have
suggested using various Machine Learning (ML) techniques
to address the challenges of VNF placement and rout-
ing [15], [34]–[37]. DeepOpt [38] combines Deep Reinforce-
ment Learning (DRL) and Graph Neural Network (GNN) for
the VNF placement policy for different network topologies.
Mijumbi et al. [39] suggest a distributed multiagent learning
based approach for VNF-service chain allocation. Most of
these approaches work similarly, where they explore different
possible states of the network and optimize performance and
cost. However, research in [40], [41] shows that these ML-
based approaches can be ineffective for larger problem sizes,
and they cannot be deployed for most real-world applications.

Although the VNF placement and routing problem is similar
to application VF placement and routing, approaches designed
for the former cannot be imported directly for the latter.
Unlike the VNF case, which deals with network functions, our
workload model captures virtual service chains that correspond
to future applications’ needs. We assume that next-generation
networks will use multiple link technologies, and we provide
a detailed model for modeling these new technologies and
their impact on the network and applications. We provide a
detailed link cost and performance modeling based on the
link technology being used – the link cost function takes into
account multiple cost metrics to accurately model the link
technologies. Moreover, we provide optimal placement based
on a detailed system model that captures many complexities
that arise with virtualized services for a next-generation mobile
network, including multi-technology wired and wireless links,
detailed service demands, and realistic node/link constraints.
For example, depending on the specific VF, the output rate
from the VF may increase or decrease the input rate into the
VF. We also provide a heuristic that solves the VF placement
problem in a multi-technology edge network. The heuristic
has polynomial runtime complexity and quickly solves the
problem while sacrificing little on the quality of the solution.

IV. SystemModel
This section describes our envisioned system model for edge

computing. We also describe our use cases (augmented and
virtual reality applications) which have stringent processing
and communication requirements that “thin” clients/mobile
devices and traditional networks fail to support.

Our model of the infrastructure consists of a multi-
technology edge network, where nodes are connected with
wireless mmWave and wired links, as shown in Figure 1b.
Nodes that are closer than a threshold distance are connected
with mmWave links. There are two types of nodes in the
network. Routing Nodes (RN) are OpenFlow enabled routers
that forward packets to the next hop toward their destination.
Processing Nodes (PN) are RNs with processing power, so a
PN can also host Virtual Functions (VFs). A PN has multiple
processing cores. For simplicity, we assume that a single core
can only host a single VF instance.

There are costs associated with using the network. There is
a fixed cost of running a VF instance on a PN. There are two
different types of cost associated with using a communication
link, namely, fixed cost and usage cost. A fixed cost is incurred
if the link is being used, regardless of the amount of traffic
flowing through the link. A usage cost is based on the cost
per unit of traffic flowing through the link.

Each flow in the network has a source node, destination
node, capacity demand, delay demand, and service chain. The
capacity demand is the bit rate that a flow needs on each link
as it goes from its source to destination. The delay demand is
the maximum delay that packets of the flow can experience
as they move from the source to destination. A service chain,
as we discussed earlier, is an ordered list of VFs that the flow
should pass through before reaching the destination node. This
is shown in Figure 1a where an application flow passes through
VFs running Authentication, Processing, and Caching before
reaching the destination application server.

Online vs Offline: The resource allocation problem consists
of placement of VFs and traffic steering, and it can be done
either online or offline. In the online case, the resources are
dynamically allocated for each flow as the flow arrives to the
system. In the offline case, all the flow demands are known
in advance and the resources are simultaneously allocated
for all flows. Both the online and offline cases are NP-hard
[42]. The offline resource provisioning case is not always
possible, especially when users’ behavior cannot be accurately
predicted. In this work, we only consider the online case.
In the next section, we provide a detailed Binary Integer
Programming (BIP) formulation for this problem, which can
be used for both online and offline cases. Note that the online
case is merely the offline case with a single flow.

To evaluate our system, we model the workload of ser-
vice chains inspired by applications such as augmented and
virtual reality applications. These applications have stringent
requirements, and are described as “killer applications” for
the next-generation mobile network [1], [2]. For example, VR
applications requires high throughput and ultra-low latency.
It is believed that VR applications, where users interact with
other users, would need bandwidth up to 500Mbps and latency
less than 5ms [1]. The challenge in advancing and deploying
such applications is that traditional architectures (using remote
clouds/datacenters) fail to satisfy such stringent requirements.
To overcome this challenge, the VR application should be
refactored as a chain of VFs that get deployed at the edge
cloud. For instance, the 3D distributed game described in [43]
may be decomposed into a chain of VFs as illustrated in Figure
2. The aim is to move most computation from Application
Servers to the edge network, to reduce latency and increase
throughput. As shown in Figure 2, when a user’s request
arrives, it first goes through the Authentication and Access
Control VF to identify the user and check if the user is allowed
to make the request. The request then moves to the Processing
and Storage VF where the request is processed and actions are
taken. These actions are also propagated to application servers
over the Internet to update the global state of the game. This
VF also has storage capability so it can provide caching and
deliver data directly to the user. The delivered data finally
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moves through the Encoding/Transcoding VF, where data is
encoded/transcoded before being sent to the user. A similar
case for AR is shown in Figure 3.

We choose augmented and virtual reality applications to
test our proposed system since they have one of the highest
throughput and one of the lowest latency requirements [1],
[2]. Other applications with a different set of throughput and
latency requirements can also use our proposed system.

V. MathematicalModel

In this section, we present the Binary Integer Programming
(BIP) formulation for the joint placement of virtualized ser-
vices (VFs) and traffic steering across the service chains. Al-
though our formulation targets our envisioned next-generation
mobile network, the system model described in Section IV can
be applied to other scenarios by making appropriate changes
to cost functions or constraints. Our model can be used by the
“service” provider to optimally allocate resources to service
chains, as we describe in this section. Specifically, we aim
to minimize the operational (OPEX) cost by maximizing the
resource utilization of the physical infrastructure. All network
parameters are described in Table I. (Later in Section VI, we
use this model, in conjunction with a network graph generation
model, to also understand the benefits of deploying mmWave
links from the point of view of the “infrastructure” provider.)

Notation Description

G(V, E) Network graph, V is the set of nodes: Routing Nodes (RNs) and
Processing Nodes (PNs), and E is the set of all links (u, v).

w(u,v)
binary {0,1}: 1 if there exists a physical link between nodes u and v,
0 otherwise.

c(u, v) Capacity of link (u, v).
l(u, v) Latency of link (u, v).

kc
(u,v)

Fixed cost of using link (u, v). If any amount of traffic, greater than
zero, passes through link (u, v), we incur this cost.

kd
(u,v)

Usage cost of using link (u, v). It is the cost of unit flow that passes
through link (u, v).

hn
i Fixed cost of instantiating a VF instance of type n on node i ∈ V .

Ov Set of cores available at node v ∈ V . Each core can support one VF.
Us Load (in Mbps) that can be served by a single VF s ∈ S .
Mn

i binary {0,1}: 1 if VF n ∈ S can be supported at node i, 0 otherwise.
φs Ratio of outgoing to incoming flow rate through VF s ∈ S .

Table I: Network Parameters.

In our model, a physical (or logical) network G(V, E) is
made up of nodes V , and links E between the nodes. Each
link has capacity c(u, v) and latency l(u, v). The fixed cost of
using a link is given by kc

(u,v), and it captures the cost incurred
if the link is used by any flow. The usage cost of a link is
given by kd

(u,v), which represents the cost per unit of flow that
passes through the link. The cost of starting a new virtualized
function instance on a Processing Node (PN) is given by hn

i .
Each PN has a set of cores available Ov, and each virtual
function runs on a single core. Each VF has a load limit Us

(in Mbps) on the total bit rate that is served by the VF instance.
Each PN can host certain types of VF n, as indicated by Mn

i .
The volume of the incoming flow and outgoing flow through
a VF changes based on the computation performed by the VF,
e.g., an encryption VF encrypts incoming traffic, so the amount
of outgoing traffic leaving the VF is more than the incoming
traffic. The ratio of the outgoing bit rate (in Mbps) over the
incoming bit rate (in Mbps) for a VF is given by φs.

Notation Description
F Set of all flows in the network.
s f Start node of flow f ∈ F.
t f Destination node of flow f ∈ F.
d f Initial capacity demand of flow f ∈ F.

l f Latency demand of flow f ∈ F. Maximum delay that a flow f ∈ F
can tolerate on the path from source to destination.

K Set of all different VFs that can be placed on nodes.

C f Service chain of flow f ∈ F. Set of VFs that flow f ∈ F needs to
traverse in a specific order, i.e. n1 → n2 → ...→ nl, where ni ∈ K.

C f
st

C f
st = [ns f → C f → nt f ]. The service chain of flow f ∈ F which

includes s f and t f nodes. To ensure that the flow starts at node s f

and ends at node t f , two imaginary VFs ns f and nt f are introduced at
s f and t f nodes, respectively. Since VFs ns f and nt f are only present
at s f and t f nodes, these nodes are selected as the start and end
nodes on the flow’s path.

d f (m→n)

Capacity demand of flow f ∈ F from VF m to n.

d f (m→n) = d f
m∏

i=s f

φi, (note : φs f = 1)

Table II: Traffic Parameters.

Table II shows the traffic parameters. Each flow f in the
network has a start node s f , destination node t f , initial capacity
demand (in Mbps) d f , latency demand (in milliseconds) l f ,
and a service chain C f . A flow is unsatisfied if any of its
constraints are not met. As the flow traverses through the VFs
in its service chain, its capacity demand changes based on the
VF’s φi. The capacity demand of a flow between two VFs is
given by d f (m→n).

A. Variables

Table III describes our model variables in detail. This in-
cludes decision variables, and derived variables (i.e., variables
dependent on decision variables).

B. BIP Formulation

1) Objective Function: Our objective is to find the optimal
placement of VFs that minimizes the resource fragmentation
in the system, i.e., maximizes the utilization of resources.
Since physical resources in the network are usually leased or
rented from third parties, we aim to maximize the utilization
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Variables Description

x f (m→n)
(u,v)

binary {0,1}: 1 if link (u, v) is used to reach from VF m to n in the
service chain C f of flow f ∈ F, and 0 otherwise.

x(u,v)

binary {0,1}: 1 if any flow uses link (u, v), and 0 otherwise. Note that
it is not a decision variable, as it can be derived from x f (m→n)

(u,v) .
x(u,v) = 1 if∑

f∈F

∑
(m→n)∈C f

st

x f (m→n)
(u,v) +

∑
f∈F

∑
(m→n)∈C f

st

x f (m→n)
(v,u) > 0 ∀(u, v) ∈ E (1)

and 0 otherwise.
Equation (1) above can also be written as a set of linear constraints as
shown below.

x(u,v) ≤
∑
f∈F

∑
(m→n)∈C f

st

x f (m→n)
(u,v) +

∑
f∈F

∑
(m→n)∈C f

st

x f (m→n)
(v,u) ∀(u, v) ∈ E

x(u,v) ≥ x f (m→n)
(u,v) ∀ f ∈ F, ∀(m→ n) ∈ C f

st , ∀(u, v) ∈ E

x(u,v) ≥ x f (m→n)
(v,u) ∀ f ∈ F, ∀(m→ n) ∈ C f

st , ∀(u, v) ∈ E

Since x(u,v) is symmetrical, we also want to enforce that x(u,v) = x(v,u)

S f n
ia

binary {0,1}: 1 if VF n ∈ C f
st is placed at core a of node i for flow

f ∈ F, and 0 otherwise.

Xn
ia

binary {0,1}: 1 if any VF n ∈ K is placed on core a of node i, 0
otherwise. Note that it is not a decision variable as it can be derived
from S f n

ia .
Xn

ia = 1 if ∑
f∈F

S f n
ia ≥ 1 ∀n ∈ C f ,∀i ∈ V,∀a ∈ Oi (2)

and 0 otherwise.
Equation (2) above can also be written as a set of linear constraints as
shown below.

Xn
ia ≤
∑
f∈F

S f n
ia ∀n ∈ C f ,∀i ∈ V,∀a ∈ Oi

Xn
ia ≥ S f n

ia ∀n ∈ C f ,∀i ∈ V,∀a ∈ Oi,∀ f ∈ F

Table III: Variables.

of resources that are already in use as long as we can satisfy
the flow demands. Following are the costs that we consider,
and we aim to minimize.

VF Deployment Cost: To run a VF on a node, we assume a
pricing/cost model that is similar to Amazon EC2 “dedicated
host”, in which a fixed cost is paid for leasing/renting the node
on which the VF instance is run.

Vc =
∑
i∈V

∑
n∈K

∑
a∈Oi

hn
i Xn

ia (3)

Link Fixed Cost: If a link is used (in any direction) by any
of the flows, regardless of the flow demand, we pay a fixed
cost. Different link technologies (namely, Wire and mmWave
links) can have different fixed costs, which we explain in detail
later in Section VI.

Ec =
∑

(u,v)∈E

kc
(u,v)x(u,v) ∀ u > v (4)

Link Usage Cost: This link usage cost is based on the
amount of link resources used by flows. It represents the cost
per unit of flow going through a link.

Ed =
∑

(u,v)∈E

kd
(u,v)

∑
f∈F

∑
(m→n)∈C f

st

x f (m→n)
(u,v) d f (m→n) (5)

Our objective is to minimize the cost of the system and
fragmentation of the resources in the system, while satisfying
the flow demands. The objective function is given by:

minimize( Vc + Ec + Ed )

This cost minimization is subject to the following con-
straints:

2) Link Capacity Constraint:∑
f∈F

∑
(m→n)∈C f

st

d f (m→n)x f (m→n)
(u,v) ≤ c(u, v) ∀(u, v) ∈ E (6)

Each link has a capacity limit. The aggregate input rate of all
flows passing through a link should not exceed the capacity
of the link.

3) Flow Latency Constraint:∑
(m→n)∈C f

st

∑
(u,v)∈E

l(u, v)x f (m→n)
(u,v) ≤ l f ∀ f ∈ F (7)

Each flow has a latency constraint. A flow, moving from
source to destination, should not experience latency greater
than its (end-to-end) latency requirement. Here we are only
considering network delays, i.e., propagation and transmission
delays.

4) Physical Link Constraint:

x f (m→n)
(u,v) ≤ w(u,v) (m→ n) ∈ C f

st (8)

A virtual link along the path of a flow should be using one of
the existing physical links given by w(u, v).

5) Flow Constraint:∑
j∈V

x f (m→n)
(i, j) −

∑
k∈V

x f (m→n)
(k,i) =

∑
a∈Oi

S f m
ia −

∑
a∈Oi

S f n
ia (9)

∀i ∈ V, (m → n) ∈ C f
st, where VF n is after VF m in the

service chain C f
st.

This constraint ensures that there is a single continuous path
between the pair of nodes on which VFs m and n are placed,
where m and n are nodes of service chain C f

st, and traversed
in the order (m→ n).

6) VF Placement Constraint:

S f n
ia ≤ Mn

i ∀ f ∈ F,∀n ∈ C f
st,∀i ∈ V,∀a ∈ Oi (10)

VF n ∈ C f
st can only be hosted on nodes that can host VF n.

7) Single VF Node Selection Constraint:∑
i∈V

∑
a∈Oi

S f n
ia = 1 ∀n ∈ C f

st (11)

Only a single node is selected to host a VF in the service
chain C f

st of flow f ∈ F.
8) Node Capacity Constraint:∑

n∈K

∑
a∈Oi

Xn
ia ≤ |Oi| ∀i ∈ V (12)

Each free core at a node can host a single VF. The number
of VFs hosted at a node is limited by the number of cores
available at that node.

9) VF Capacity Constraint:∑
f∈F

d f (m→n)S f n
ia ≤ Un ∀i ∈ V, ∀a ∈ Oi, ∀n ∈ C f (13)

Each VF at a node has a capacity limit and can only serve
flow demands (in Mbps) within that limit.
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10) Single VF per core:∑
n∈C f

S f n
ia <= 1 ∀ f ∈ F ∀i ∈ V ∀a ∈ Oi (14)

Each core at a node can host at most one VF.

VI. EvaluationModel, Parameters and Proposed Heuristic

In this section, we present our evaluation model and pa-
rameters for both the edge network and the workload of VR
and AR service chains. We then provide a description of our
proposed heuristic.

A. Edge Network Graphs

We used different types of edge network topologies for the
simulation. We generated synthetic graphs using BRITE [44],
a widely used network graph generator. Moreover, we used
real edge network topologies for two cities, Santa Monica
(CA, USA) and Palo Alto (CA, USA). Next, we explain the
topologies generated using each technique.

1) Synthetic Edge Network Topology using BRITE: BRITE
is a widely used network graph generator [44]. BRITE sup-
ports multiple graph generation models, including models for
flat and hierarchical graphs. BRITE separates the placement
of the nodes from the process of growing the graph and
interconnecting the nodes. We use BRITE’s random node
placement model for placing nodes in a plane, and BRITE’s
Waxman model for interconnecting the nodes probabilistically
[45]. BRITE network has 25 nodes and node density of 6.25
nodes/km2.

2) Real Edge Network Topology: We used real city network
topologies to generate edge networks. We used the optical fiber
network topology of two cities in the USA. The original wired
network topologies for Santa Monica and Palo Alto are shown
in Figures 4a and 5a, respectively. We mapped the original
topologies onto the Google Maps [46], as shown in Figures 4b
and 5b. Mapping a topology on Google Maps helped us in
finding the coordinates of different points on the maps. The
original maps do not show the router nodes. We assumed there
exists a router node at the intersection of the wires and the
end of each wire. Moreover, we introduced some additional
router nodes within long-distance links for the Santa Monica
topology.
Santa Monica:
We used the wired network topology for Santa Monica, CA,
USA. As shown in Figure 4, Santa Monica’s wired network
topology is a distributed bus topology [47], with few connec-
tions between backbone bus lines. Distributed bus topology is
a widely used edge network topology for city networks. Santa
Monica wired network has 43 nodes and a node density of
3.61 nodes/km2.
Palo Alto:
We used the wired network topology for Palo Alto, CA, USA.
As shown in Figure 5, Palo Alto’s wired network topology is a
ring topology with few connections across the diameter of the
ring network. Ring topology is a widely used edge network
topology for city networks. Palo Alto’s wired network has 36
nodes and a node density of 0.91 nodes/km2.

(a) Original Topology

(b) Generated Topology

Figure 4: Santa Monica network topology.

3) Adding mmWave links: The initial topologies that we
generate represents a base edge network that consists of only
wired links. We then augment this base graph with mmWave
links to obtain three different types of graph, which are
described next.
Wire: This is the initial graph generated with only wired links.
An example of such graph is shown in Figure 6a.
Single: mmWave links are added to the Wire graph if the
distance between any two nodes in the graph is less than
a given distance/mmWave-range (elaborated on below). How-
ever, if there is already a wired link between the two nodes,
a mmWave link is not added. So we have only a single type
of link technology (mmWave or Wire) between any two nodes,
as shown in Figure 6b.
Dual: mmWave links are added to the Wire graph if the
distance between any two nodes in the graph is less than a
given distance/mmWave-range (elaborated on below). In this
scenario, two nodes may have dual technology links, i.e., both
mmWave and Wire links, as shown in Figure 6c. Dual has the
maximum number of possible mmWave links between nodes
in the network.

Characteristics of different graphs for our evaluation, in
terms of nodes, area and links, are summarized in Table IV.
Graphs generated using BRITE covers a small area of 4.0
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(a) Original Topology

(b) Generated Topology

Figure 5: Palo Alto network topology.

R1

R5
P1

P2R4

R3

R2

a) Wire: wired links only b) Single: mmWave when no wired c) Dual: mmWave & wired

R1

R5
P1

P2R4

R3

R2

R1

R5
P1

P2R4

R3

R2
wired link
mmWave link

Figure 6: Multi-technology edge network consisting of pro-
cessing and routing nodes.

km2 and has the highest node density of 6.25 nodes/km2.
Santa Monica has an area of 11.90 km2 and a node density
of 3.61 nodes/km2 and Palo Alto has an area of 39.65 km2

and the lowest node density of 0.91 nodes/km2. Because of
the differences in the node density, BRITE has the highest
percentage of mmWave links. Santa Monica has the second
highest percentage of mmWave links and Palo Alto has the
lowest percentage of mmWave links.

Table V shows the various parameters used in our evaluation
campaign. The range of a mmWave link is defined by variable
rangemm. Two nodes in the network cannot have a mmWave
link if their distance is beyond rangemm. rangemm is chosen
to be 500m, which can be achieved in urban environments
with Line Of Sight (LOS) connections [48]. The capacity of
mmWave links can vary in the 1 Gbps–10 Gbps range, based
on channel conditions [49]. We have taken the link capacity
c(u, v)mm to be 2 Gbps for mmWave links [49], and c(u, v)w to
be 10 Gbps for Wire links.

The fixed cost for using a mmWave link, kcmm
(u,v), is kept low

BRITE

Type # Nodes Area Technology avg. #
of links

%age
of links

Dual 25 4.0 km2 mmWave 47.4 65.5
Wire 25 34.5

Single 25 4.0 km2 mmWave 35.6 58.8
Wire 25 41.2

Wire 25 4.0 km2 mmWave 0 0.0
Wire 25 100

Santa Monica

Type # Nodes Area Technology avg. #
of links

%age
of links

Dual 43 11.90 km2 mmWave 90 62.50
Wire 54 37.50

Single 43 11.90 km2 mmWave 65 54.62
Wire 54 45.38

Wire 43 11.90 km2 mmWave 0 0.0
Wire 54 100

Palo Alto

Type # Nodes Area Technology avg. #
of links

%age
of links

Dual 36 39.65 km2 mmWave 44 50.57
Wire 43 49.43

Single 36 39.65 km2 mmWave 18 29.51
Wire 43 70.49

Wire 36 39.65 km2 mmWave 0 0.0
Wire 43 100

Table IV: Graph Parameters and Characteristics

Parameter Description Value
rangemm mmWave range 500 m
c(u, v)mm Capacity of mmWave links 2 Gbps
c(u, v)w Capacity of Wire links 10 Gbps

kcmm
(u,v) Fixed cost for using mmWave link 1

kcw
(u,v) Fixed cost for using Wire link 50

kdmm
(u,v) Cost per unit flow for using mmWave link 1/PS

kdw
(u,v) Cost per unit flow for using Wire link 1

l(u,v)
Latency of link (u, v) is the sum of propagation and
transmission delays -

hn
i

Fixed cost of instantiating a VF instance of type n on
node i 200

|Ov | Number of cores available at processing node v 10
Us Capacity of the VF s 15 Gbps

ratioPN Ratio of processing nodes to routing nodes 0.3

Table V: Evaluation Parameters

by setting it to 1, since it is less costly to establish mmWave
links between two sites if they are within the range rangemm.
On the other hand, the fixed cost for Wire links is higher, and
so we set it to 50, since Wire links are usually leased / rented
from an infrastructure provider.
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Figure 7: Probability of successful bit delivery over a
mmWave link

The usage cost for mmWave links, kdmm
(u,v), depends on link

performance and is set to 1/PS , where PS is the probability
that a bit sent over the link successfully reaches the other
side. PS is obtained using the empirical studies on mmWave
technology described in [50], [51]. Figure 7 shows PS as a
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function of distance. Note that the usage cost kdmm
(u,v) becomes

significantly higher as the distance between the two nodes con-
nected via a mmWave link increases. Hence, shorter mmWave
links are favored over longer mmWave links. For Wire links,
the usage cost kdw

(u,v) = 1, since the cost (delivery performance
penalty) associated with using Wire is relatively much lower.
The latency of a link is given by l(u, v), and is equal to the
sum of propagation and transmission delays. Note that there
will be zero or negligible queuing delays when demands match
allocated capacities.

We select a fraction of the nodes in the network graph to
be processing nodes (PNs). This ratio, denoted by ratioPN , is
set to 0.3, i.e. only 30% of the nodes are PNs. Each PN node
has |Ov| cores available, and we set |Ov| = 4. This means that
each PN can host at most 4 VFs. The capacity of a single VF
Us is set to 15 Gbps. The cost associated with instantiating a
VF hn

i is set to 200. It represents the cost of leasing a virtual
machine or container from the edge datacenter. A high value
has the effect of packing as many flows as possible on a VF
as long as the flow demands can still be fulfilled. Next, we
explain the process of selecting processing nodes.

4) Processing Node Selection: We assume that any node
in the network can be chosen as a processing node. ratioPN

fraction of nodes are selected as processing nodes. Processing
nodes are selected such that the sum of the distances from
each node to the closest processing node is minimized.

We formulate this problem as Integer Linear Program (ILP).
The distance from the node i to processing node (PN) p is
denoted by cpi. X is the total number of processing nodes.
Note that the nodes and the processing nodes share the same
set of points. We define the following variables:

zpi = 1 if node i is satisfied by PN p, 0 otherwise
xp = 1 if PN p is being used, 0 otherwise
We formulate the problem as integer-optimization model.

minimize
∑
p∈N

∑
i∈N

cpizpi

Subject to:
1. The total number of processing nodes are equal to X∑

p∈N

xp = X

2. A single processing node p is selected for each node i∑
p∈N

zpi = 1 ∀i ∈ N

3. xp = 1 if node p is selected as PN

zpi ≤ xp ∀p ∈ N ∀i ∈ N∑
p∈N

zpi ≥ xp ∀x ∈ N

We used CPLEX solver1 to solve the ILP above for the
selection of processing nodes for Santa Monica and Palo Alto
network graphs. Since the graphs generated using BRITE

1IBM ILOG CPLEX Optimizer,
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer

VR Flow
Parameter Description Value

d f
VR Initial flow demand µ = 10 Mbps

σ = 2 Mbps

l f
VR Latency demand µ = 5 ms

σ = 1 ms

φA&AC
Ratio of outgoing to incoming flow rate through
the Authentication & access control VF 0.9

φP&S
Ratio of outgoing to incoming flow rate through
the Processing & storage VF 20

φE&T
Ratio of outgoing to incoming flow rate through
the Encoding / Transcoding VF 0.8

AR Flow
Parameter Description Value

d f
AR Initial flow demand µ = 150 Mbps

σ = 20 Mbps

l f
AR Latency demand µ = 4 ms

σ = 1 ms

φA&AC
Ratio of outgoing to incoming flow rate through
the Authentication & access control VF 0.9

φL&Tk
Ratio of outgoing to incoming flow rate through
the Localization / Tracking VF 0.9

φE/P/S
Ratio of outgoing to incoming flow rate through
the Embedding / Processing / Storage VF 1

φE&T
Ratio of outgoing to incoming flow rate through
the Encoding / Transcoding VF 0.8

Table VI: Flow Parameters

are synthetic, we generated multiple graph topologies and
randomly selected processing nodes.

B. Input Flow Parameters

There are two different types of flow in the network, each
type has different service chain requirements representing
either Virtual Reality (VR) or Augmented Reality (AR). For
each of the generated network graphs, we generate five sets of
flows, where each incoming flow is either VR or AR flow with
probability 0.5. Each flow starts and ends at the same node
(representing the user/client), which is randomly selected. We
only consider the allocation of the service chains on the edge
network. Flow parameters for VR and AR flows are described
in Table VI.

C. Proposed Heuristic

We used the CPLEX solver to solve the BIP that we
described in Section V-B. The running time for obtaining
the optimal solution for each of our evaluations is very high
because of the NP-hardness of the problem. The problem
has exponential worst-case complexity. To reduce the running
time, Algorithm 1 shows a fast heuristic whose solution we
compare against the CPLEX solution in terms of performance
and running time.

This heuristic takes a flow and returns a least cost path,
while fulfilling the flow requirements. It takes the current
state of the network graph (G with nodes, edges, residual
link capacities, fixed and dynamic costs, processing nodes)
as input, along with the input flow requirements, i.e., source
and destination nodes, service chain, flow latency and φi

(bandwidth ratio after the use of each VF along the chain).
Initially (line 1), we use the function getFeasibleGraph to

get a subgraph (G′) from the original graph G that includes
only those links that have enough capacity to satisfy the flow
end-to-end rate demand. The function getNearbyPN (line 2)
finds the q nearest (in number of hops) processing nodes
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Algorithm 1 Service Chain Placement Heuristic
Input:
f : incoming flow
G(V, E): Network graph, V is set of nodes and E is set of links
PN: set of processing nodes, where PN ⊆ V
q: number of nearest processing nodes used for virtual function placement
Output: minPath

1: G′ = getFeasibleGraph(G, f ); // subgraph G’(V,E’), E’ can carry flow demand
2: PN s f

q = getNearbyPN(G′, s f , PN, q);// get set of q nearby processing nodes
3: P f = getS hortestPaths(PN s f

q , G, f );//all possible paths through processing nodes
4: minPath = null
5: minPathCost = ∞

6: for path p in P f do
7: if pathFeasible(p, l f , d f ) then
8: c f

p = getCost(p, f ) // cost = fixed cost + usage cost + VF placement cost
9: if c f

p < minPathCost then
10: minPathCost = c f

p
11: minPath = p
12: end if
13: end if
14: end for

(PN s f

q ) from the source (s f ) on subgraph G′ using Dijkstra’s
shortest path algorithm. After getting PN s f

q processing nodes,
getShortestPaths is invoked (line 3), which calculates all
possible least-cost paths through every permutation of the
processing nodes in PN s f

q . While calculating paths, getShort-
estPaths makes sure that for each path, the segment from the
source to the first processing node has available capacity that
is at least equal to the rate outgoing from the source (d f ). Also,
from the first processing node to the last processing node, it
has the maximum possible capacity required by the flow, and
from the last node to the destination, it has at least a capacity
of d f ∏nl

i=s f φi.
Next, we evaluate each path individually. We perform addi-

tional feasibility checks using pathFeasible in line 7. pathFea-
sible checks if the path’s latency is less than the flow’s end-to-
end latency requirement and the path can provide/deploy the
function chain. If the path is feasible, we calculate the cost of
allocating the flow f on the path p using the function getCost
(line 8); the cost includes link usage and VF deployment cost
along the path p. Here, we take a greedy approach where
we try to use VFs that are already deployed along the path,
otherwise collocate other missing VFs on the same processing
node(s) if feasible. After evaluating all paths in P f , we pick
the path with the lowest cost for the flow.

The worst-case time complexity of the heuristic to satisfy
a single flow is O(V3). The function getFeasibleGraph (line
1) has a time complexity of O(E) (or O(V2) for a complete
graph). getNearbyPN (line 2) and getS hortestPaths (line
3) use the all-pairs shortest path algorithm, which has a
time complexity of O(V3). pathFeasible (line 7) has a time
complexity of O(V) and getCost (line 7) has a time complexity
of O(V2). Hence, the overall time complexity of the heuristic
is O(V3).

VII. Evaluation Results

In this section, we discuss the results of our study where
we evaluate the performance and cost of allocating service
chains as flows arrive to the edge network. We consider the
following performance metrics: (1) Flow Acceptance Ratio:
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Figure 8: Cost vs running time comparison of BIP vs
Heuristic

is the ratio of flows accepted (i.e., resources are available to
allocate to these flows) to the total number of flow arrivals,
(2) Virtual Capacity Allocated: is the total virtual capacity of
all links along the service chains of accepted flows, and (3)
Average Link Utilization: is the ratio of link usage over link
capacity averaged over all links, or over each of the two types
of link (Wire and mmWave). Results are shown for BRITE,
Santa Monica and Palo Alto topologies. For each type of
typology, results with 90% confidence intervals are shown for
Wire, Single, and Dual networks for both BIP and Heuristic.
Observations: Before presenting the details of our results, we
summarize our main observations as follows: (1) Augmenting
the physical (Wire) infrastructure with mmWave links yields
significantly higher flow acceptance ratio and virtual capacity
allocated (up to 20% higher); (2) Most significant gains using
mmWave links are in high node density networks, where nodes
are closer to each other, and reliable mmWave links can be
established between the nodes. (3) These mmWave links should
complement the connectivity provided by Wire links and only
a small number of mmWave links needs to be deployed
to achieve most performance gains; (4) The flexibility in
resource allocation afforded by decomposing applications into
service chains that can be deployed anywhere on the edge
infrastructure yields significant gains (up to three times higher
accepted virtual capacity) over a traditional “middlebox” static
deployment; and (5) The proposed heuristic decreases the
running time by up to one order of magnitude when compared
with BIP while giving performance results close to BIP.

The cost versus running time for BIP and our heuristic
is shown in Figure 8 for the Dual scenario. As explained
in Section IV, in the BIP online case, the resources are
dynamically allocated for each flow as it arrives, while in
the offline case, all flow demands are known in advance and
resources are simultaneously allocated for all flows. Since
offline has advance knowledge of all incoming flow demands,
it can efficiently allocate the flows on the network and the cost
is lowest. However, the running time for offline is orders of
magnitude larger than the online case. The proposed heuristic
yields a cost comparable to the BIP online case, with running
time that is one order of magnitude lower. The offline resource
provisioning is not always possible since we cannot accurately
predict incoming flows. For this reason, in the remainder of
the paper, results are shown for the BIP online case.

Figure 9 shows the flow acceptance ratio of BRITE, Santa
Monica, and Palo Alto as a function of incoming flows for
different types of network. The high node-density networks
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(b) Acceptance Ratio for Santa Monica
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(c) Acceptance Ratio for Palo Alto

Figure 9: Flow Acceptance Ratio for Wire, Single and Dual networks with BIP and Heuristic
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(a) Virtual Capacity Allocated for BRITE
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(b) Virtual Capacity Allocated for Santa
Monica
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(c) Virtual Capacity Allocated for Palo Alto

Figure 10: Virtual Capacity Allocated for Wire, Single and Dual networks with BIP and Heuristic

of BRITE and Santa Monica with mmWave links (Single and
Dual) accept more flows than the same network with only
wired links (Wire). The low-density network of Palo Alto
yields little/no gain with mmWave links. As the density of
nodes decreases, the probability of having a mmWave link
between two nodes (within range) is small. This yields a
network with sparse mmWave links, thus a small increase in
the connectivity and capacity of the network, and a little/no
increase in the accepted flows. The flow acceptance difference
between mmWave and wire networks is more significant in
high-density networks. The percentage of mmWave links are
higher in high-density networks as nodes are closer to each
other, and the probability of having mmWave links between
two nodes (within range) is higher. This yields a network
that is better connected and with increased capacity. Thus,
we observe a higher number of accepted flows.

Since each flow can have different capacity requirements
along its virtual service chain, the number of flows ac-
cepted does not necessarily mean that the network capacity
is efficiently allocated. Figure 10 shows the virtual capacity
allocated for BRITE, Santa Monica and Palo Alto. Again, we
see that Single and Dual have higher virtual capacity allocated
than Wire for high node-density networks. There is little/no
gain for Palo Alto, which has low node density. For both
Figure 9 and Figure 10, results obtained by the proposed
heuristic are very close to BIP.

Figures 11 to 13 show the average link utilization for
both mmWave links and Wire links. We observe that the
Wire network has higher link utilization because the network
has lower capacity and links get congested quickly. Figures
12 and 13 show the link utilization for Wire links, and for
mmWave links, respectively. We see in Figure 12 that Wire
links are better utilized (up to 20%) when there are mmWave

links in the high node-density networks. The existence of
mmWave links makes the network better connected, which
leads to better utilization of the resources and higher number of
flows accepted. Figure 13 shows that mmWave links are better
utilized (up to 10% in BRITE) in Single networks compared
to Dual networks, although the acceptance ratio and virtual
capacity allocated for both networks are the same. However,
mmWave links have higher usage cost. Thus, initially, when the
network is not yet congested, only a few mmWave links are
used. So initially, the average utilization for mmWave links is
low, as shown in Figure 13. On the other hand, as more flows
enter the system and the network becomes congested, more
and more mmWave links are used to satisfy the flow demands.
This leads to higher utilization of mmWave links, but at a
higher cost. In all the graphs, the gain is significant in the high
node-density networks. We also provide a comparison with the
proposed heuristic. We observe that the heuristic performance
is close to the performance given by BIP.

Figure 14 shows the CDF of utilization of the mmWave
links for Single scenarios for BRITE, Santa Monica and Palo
Alto. We observe that in the Single scenario, 60% of the links
have utilization of less than 6%, and around 20% of the links
are completely saturated with utilization close to 100%. This
shows that significant performance gains can be achieved by
judiciously deploying a small number of mmWave links.
Middlebox Scenario: To highlight the benefit of using (opti-
mal) distributed virtual NF placement, we compare it with a
traditional middlebox scenario. In the middlebox scenario, a
powerful hardware appliance, with all the required services, is
placed at the edge of the network. For each network (i.e., Wire,
Single and Dual), we chose a single Processing Node (PN) to
host the middlebox, i.e.. We set this middlebox to be 10 times
more powerful (i.e., it can serve 10 times more flows) than a
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Figure 11: Average Link Utilization for all links as a function of incoming flows for Wire, Single and Dual networks
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Figure 12: Average Link Utilization for Wire links as a function of incoming flows for Wire, Single and Dual networks
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Figure 13: Average Link Utilization for mmWave links as a function of incoming flows for Single and Dual networks
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Figure 15: Flow Acceptance Ratio under middlebox schenario for Wire, Single and Dual networks
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Figure 16: Virtual Capacity Allocated under middlebox schenario for Wire, Single and Dual networks

virtualized service placed on a PN, and it runs all the needed
services. Figures 15 and 16 show the flow acceptance ratio
and virtual capacity allocated, respectively, for the middlebox
scenario. The number of flows accepted in the middlebox case
(Figure 15) are far lower than that accepted in the distributed
VF placement scenario (Figure 9). As shown in Figures 10
and 16, the virtual capacity allocated for the distributed VF
placement scenario is three times higher than the traditional
middlebox scenario for higher density networks.

Discussion: The results clearly show the benefits of introduc-
ing mmWave links in the network with higher node density.
However, it is important to wisely deploy these mmWave
links. As shown in Table IV, the Dual network has a larger
number of mmWave links compared to the Single network.
However, if we look at the marginal utility of using Dual
over Single, the gains are negligible. The flow acceptance ratio
and the virtual capacity allocated (Figures 9 and 10) for both
cases are within the 90% confidence interval. Furthermore,
the average utilization of links is higher in Single compared
to Dual (Figure 11) for high density network, which means
links are better utilized in the former. Figure 14 also shows that
only a small number of mmWave links are needed to achieve
most performance gains. This leads us to conclude that a small
number of mmWave links should be introduced such that the
overall connectivity between the nodes is increased, rather than
to just increase the capacity of the network.

We also note that the middlebox scenario fails to take
advantage of introducing mmWave links, as the number of
flows accepted for the Wire network is similar to that for
networks with additional mmWave links (Figures 10 and 16).

VIII. Conclusion
In this paper, we studied the problem of allocating resources

at the edge in support of envisioned next-generation appli-
cations, e.g., virtual and augmented reality. We presented a
model of an edge network with multiple link technologies,
namely, Wire and mmWave. We also developed a workload
model that consists of the service chains with varying capacity
requirements as the traffic flow traverses its chain. We formu-
lated a binary integer optimization problem whose objective
is to minimize the cost of deploying these service chains
over the edge network, while satisfying their high throughput
and ultra-low latency requirements. We also introduced a
fast heuristic to solve the problem. Our extensive evaluations
demonstrate the benefits of managing virtual service chains
(by distributing them over the edge network) compared to a
baseline “middlebox” approach (where all services are run on
one host) in terms of overall admissible virtual capacity.

Moreover, we observe significant gains when deploying a
small number of mmWave links that complement the Wire
physical infrastructure. We show that a network topology with
a high density of nodes has the highest performance gains
since a large number of reliable mmWave links are formed
between the nodes, thus increasing both the capacity and
connectivity of the network.
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