
LIBRA: An Economical Hybrid Approach for

Cloud Applications with Strict SLAs

Ali Raza

Boston University

araza@bu.edu

Zongshun Zhang

Boston University

zhangzs@bu.edu

Nabeel Akhtar

Akamai Technologies Inc.

nakhtar@akamai.com

Vatche Isahagian

IBM Research

vatchei@ibm.com

Ibrahim Matta

Boston University

matta@bu.edu

Abstract—Function-as-a-Service (FaaS) has recently emerged
to reduce the deployment cost of running cloud applications
compared to Infrastructure-as-a-Service (IaaS). FaaS follows
a serverless “pay-as-you-go” computing model; it comes at a
higher cost per unit of execution time but typically application
functions experience lower provisioning time (startup delay). IaaS
requires the provisioning of Virtual Machines, which typically
suffer from longer cold-start delays that cause higher queuing
delays and higher request drop rates. We present LIBRA, a
balanced (hybrid) approach that leverages both VM-based and
serverless resources to efficiently manage cloud resources for the
applications. LIBRA closely monitors the application demand
and provisions appropriate VM and serverless resources such
that the running cost is minimized and Service-Level Agreements
are met. Unlike state of the art, LIBRA not only hides VM cold-
start delays, and hence reduces response time, by leveraging
serverless, but also directs a low-rate bursty portion of the
demand to serverless where it would be less costly than spinning
up new VMs. We evaluate LIBRA on real traces in a simulated
environment as well as on the AWS commercial cloud. Our re-
sults show that LIBRA outperforms other resource-provisioning
policies, including a recent hybrid approach – LIBRA achieves
more than 85% reduction in SLA violations and up to 53% cost
savings.

Index Terms—EC2, Lambda, IaaS, FaaS.

I. INTRODUCTION

In recent years, fueled by increased cloud adoption, business

demands, and advances in technology (e.g. AI, edge com-

puting, etc.), public cloud providers expanded their offerings

to include a plethora of services. These services cater for a

wide spectrum of customers1 from those who want to control

their own development stack to those who want to focus on

designing and delivering new features without worrying about

the underlying infrastructure. All these services come with

varying configurations and have different performance and

pricing models. Given all the service options available from the

cloud providers, choosing the best suitable service to deploy

applications is a challenging problem.

Infrastructure-as-a-Service (IaaS) is one of the most com-

mon cloud services available. It allows a tenant to lease VMs

with particular configurations to deploy a cloud application.

A customer can add or remove VM instances in response

to fluctuating demand of the application. Depending on the

VM configuration and cloud provider, it can take hundreds

of seconds to set up an instance of a VM (cold-start). This

can have an adverse effect on the performance of a cloud

application, particularly in the presence of flash-crowd traffic

1We use the terms “customer” and “tenant” interchangeably.

demand, where the application demand increases quicker than

the VM resource provisioning time. To deal with this problem,

cloud providers offer auto-scaling service. This service mon-

itors resource utilization (e.g., CPU or memory), and scales

out (increase) or in (decrease) VM instances based on user

defined thresholds.

Function-as-a-Service (FaaS) [1] is a recent popular offering

from most cloud providers. In this model, a tenant writes the

code of the application (called serverless function) in one of

the supported languages, and submits the code to a cloud

provider along with dependencies and associated execution

triggers. On an invocation, the code is executed in a sandbox

environment, and the result is returned to the triggering event.

In the past few years, FaaS has evolved to the point that most

cloud applications [2]–[9] can be developed using FaaS, or

given the application, it can be easily translated into the FaaS

programming model [10]. A value-added of FaaS is that it

does not require explicit scaling instructions from a tenant.

The serverless platform is responsible for scaling the resources

to address fluctuating demand.

There are two distinct features that set FaaS apart from IaaS:

1) Quick provisioning: serverless functions are executed in

sandbox environments which can be provisioned within a few

milliseconds [11]. This feature makes FaaS an ideal service to

serve flash-crowd traffic demands. 2) Pricing model: While

both FaaS and IaaS follow the spirit of “pay as you go”

pricing model, FaaS promises real “pay as you go” with no

waste of resources [1]. Under the IaaS model, customers are

charged for the entire duration a VM is leased independent of

the utilization (i.e. whether or not the application is running).

Under the FaaS model, customers are only charged for the

execution time of the application function. While the cost

per unit time of execution in FaaS is comparatively higher

than IaaS with the same resources, its cost model – charging

the customer for the precise amount of time an application

is running – makes it an ideal choice for low-duty demand

cycles, where leasing a VM instance for a longer time with

little to no utilization can be expensive.

Considering the performance and pricing models for IaaS

and FaaS, in this paper we show that a combination of IaaS

and FaaS is ideal to cater to the dynamic demand of a

cloud application. Previous hybrid approaches [2], [12], [13]

have leveraged the quick-provisioning-time feature of FaaS by

directing a portion of the demand to FaaS temporarily while

scaling out IaaS based resources (i.e. VMs), which leads to

lower service-level agreement (SLA) violations. To the best

1

of our knowledge, no work has investigated the simultaneous

use of FaaS to reduce the overall cost by consistently directing

the low-rate bursty portion of the demand to FaaS.

In this paper, we present LIBRA, a load balancing ap-

proach for cloud applications with strict SLA requirements2.

Two contributions set LIBRA apart from previous hybrid

approaches: 1) LIBRA continually monitors the demand for

an application and procures resources in IaaS, FaaS, or both to

cater to the demand while optimizing the cost and performance

of an application. In contrast, previous hybrid approaches

employ VMs as their primary resource and only leverage

FaaS to hide VM startup delays; 2) We compare LIBRA to

Spock [12] (a recently proposed hybrid approach) and other

resource provisioning policies. Our evaluation of LIBRA on

both Amazon Web Services (AWS) and a simulated cloud

shows that LIBRA outperforms these other approaches in

lowering the overall cost of a cloud application while reducing

SLA violations in the presence of dynamic demand.

Our contributions are summarized as follows:

• In Section II, we present an economic model to analyze

the cost of using IaaS versus FaaS to serve a given

application demand. We derive a “cost-indifference point”

(CIP) that determines an upper bound on the demand rate

to direct to FaaS that guarantees a lower cost compared

to using IaaS.

• We present the architecture of LIBRA (Section III), a

hybrid load balancing approach that simultaneously uses

both FaaS and IaaS, motivated by our analysis that a

portion of the demand sent to FaaS at a rate lower than

CIP can be served in a cost-effective way.

• We evaluate LIBRA in a simulated cloud environment

(Section IV) and on AWS services (Section V) with

real application demand traces to establish its efficacy.

Our results show that LIBRA outperforms other resource

provisioning policies, including Spock [12], in reducing

both cost (48% compared to FaaS, 53% compared to VM

over-provisioning, and up to 20% compared to VM auto-

scaling and Spock) and SLA violations (more than 85%

compared to auto-scaling and Spock).

Section VI summarizes related work, and Section VII con-

cludes the paper.

II. BACKGROUND & MOTIVATION

Despite development and deployment challenges, IaaS and

FaaS are popular choices for building and deploying cloud

applications. Typically, developers target one of these services

for an application deployment, but recent trends have shown

that simultaneous use of these services can improve the appli-

cation’s performance [2], [12]. We contend that simultaneously

leveraging both services (IaaS and FaaS) not only improves the

performance but can also decrease an application’s operational

cost. In particular, IaaS is more economical for supporting the

high-rate steady portion of the load of application requests,

2Examples of such applications are machine learning inference models, IoT
applications that collect/process data, etc.

while FaaS is more economical for supporting the low-rate

bursty portion of that load.

FaaS provisions serverless functions in as little as 10s of

milliseconds [11]. This quick provisioning time of FaaS has

been leveraged in the literature to hide VM cold-start delays

and hence lowering SLA violations [2], [12], [13]. In contrast

to these previous approaches, LIBRA consistently monitors

the application load, and directs a portion of the application

load to FaaS when it is a cheaper alternative to provisioned

VMs.

In this section, we present an economic (cost) model of an

application deployed using either FaaS or IaaS cloud service.

We use this model to derive the “cost indifference point”

(CIP) as a function of the request arrival rate, where the costs

of using IaaS or FaaS for an application are equal. If the

application load is below this CIP value, it is more economical

to use FaaS. For higher loads, IaaS is more economical. This

analysis motivates the design of our LIBRA approach.

A. FaaS: Serverless Pricing Model

Serverless platforms follow a “pay as you go” pricing model

where the user is only charged for the execution time of the

serverless function based on a particular configuration (e.g.,

memory) [14].

Our previous work [15] studies the effect of configurable

resources on various types of serverless functions in AWS

Lambda. It showed that AWS Lambda’s execution time fol-

lows exponential decay (i.e., diminishing return, as shown in

Figure 1a), and can be expressed as follows:

tFaaS
f (m) ≈ tFaaS

f (mmax)+

(tFaaS
f (mmin)− tFaaS

f (mmax)) e
−λ(m−mmin)

(1)

where tFaaS
f (m) is the execution time of a function f when

allocated memory m MB, tFaaS
f (mmin) is the running time

of f at the smallest possible memory configuration (mmin =
128 MB for Amazon Lambda), tFaaS

f (mmax) is the running

time at the largest possible memory configuration (mmax =
3008 MB for Amazon Lambda), and λ is a decay constant.

Consider an application, deployed using FaaS, that receives

N requests per second, where each request causes the execu-

tion of a serverless function f . The usage cost per second can

be calculated as follows:

costFaaS =

N∑

i=1

(tFaaS
f (m)×CFaaS(p,m)+GFaaS(p)) (2)

where CFaaS(p,m) is the cost per unit time3 of executing a

serverless function as specified by the serverless platform p
for a given configuration m, and GFaaS(p) is the total fixed

cost charged by the cloud provider (such as API-gateway cost

for AWS Lambda [14]). This cost model also holds for other

cloud providers which follow similar pricing models for FaaS,

such as IBM Functions, Google Cloud Functions, etc.

3Serverless platforms currently charge for every 1ms or 100ms of execution
time, depending on the platform [14], [16]–[18].

2

500 1000 1500 2000 2500 3000
memory (MB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ru
n
ti

m
e
 (

se
c)

(a) AWS Lambda Execution Model

100 101

requests / sec

0.0

0.2

0.4

0.6

0.8

1.0

co
st

 /
 s

e
c

($
)

1e 4

m4.large

m3.medium

t2.medium

lambda

(b) Cost at Request Memory=512MB

100 101

requests / sec

0.0

0.2

0.4

0.6

0.8

1.0

co
st

 /
 s

e
c

($
)

1e 4

m4.large

m3.medium

t2.medium

lambda

(c) Cost at Request Memory=3008MB

0% 20% 40% 60% 80% 100%
Requests to FaaS

0.0

0.2

0.4

0.6

0.8

1.0

T
o
ta

l
C

o
st

 (
$
)

1e 4

IaaS cost

FaaS cost

(d) Hybrid Case

Fig. 1: Cost comparison of Amazon Lambda and EC2 instances for varying average request arrival rate

B. IaaS: VM Pricing Model

In the IaaS model, a tenant leases a VM with a particular

configuration, such as memory, CPU, and storage, to deploy

an application. A tenant is charged the cost of the VM inde-

pendent of its utilization. A VM with a particular configuration

can only serve a certain number of requests in a given time

period while meeting SLA requirements.

If a VM can host at most rmax requests per second without

violating the SLA, and the IaaS based deployment receives N
requests per second, the cost per second can be calculated as

follows:

costIaaS = ⌈
N

rmax

⌉ × Cvm(p) (3)

where Cvm(p) is the cost per second4 of renting a particular

VM (vm) from a certain cloud provider p.

C. Cost Analysis

Using Equations (2) and (3), we compare the cost of

deploying an application using FaaS or IaaS, respectively. We

evaluate the cost for varying demand given by N , the rate

of requests for the application, where each request causes the

invocation of application code deployed using FaaS or IaaS.

The execution model of the application/function used is

shown in Figure 1a and follows an exponential decay (i.e.,

diminishing return) in the running time of the function with

respect to the amount of resources (memory) allocated [15],

[22]. It gives the execution time tFaaS
f (m) of the application

for different memory m settings when deployed using FaaS.

IaaS based deployment would follow a slightly different exe-

cution model as underlying resources can differ from FaaS.

Thus, the execution model of the IaaS based deployment

with respect to FaaS can be described as:

tvmf (m) = τ × tFaaS
f (m) (4)

where tvmf (m) is the execution time of the IaaS based deploy-

ment when allocated memory m to each request, and τ is a

constant whose value is a real positive number and can vary

based on the application and underlying resources. Without

loss of generality, we show results where under both IaaS and

FaaS, the application follows the same execution model (i.e.,

τ = 1), and memory is the bottleneck resource in the execution

of the function as most FaaS platforms allow only memory as

4IaaS resources can be rented on an hourly basis, while a user can also be
charged for partial usage (per second) [19]–[21].

a configurable resource5. Note that setting τ to values different

than 1 does not qualitatively affect the results of our analysis.

Using tFaaS
f (m) and m, we calculate costFaaS using

Equation (2), where the costs CFaaS(p,m) and GFaaS(p) are

taken from AWS Lambda pricing [14].

For IaaS, the costIaaS is calculated using Equation (3),

where rmax, the maximum number of requests that a VM

with memory M can handle in one second, can be derived

using Little’s Law [23]:

M

m
= rmax × tvmf (m)

M
m

, the long-term average number of concurrent requests in

the system, equals the arrival rate of these requests (rmax)

times the (average) time that a request spends in the system

(tvmf (m)). We thus have:

rmax =
M

m
×

1

tvmf (m)
(5)

We use the AWS Elastic Compute Cloud (EC2) pric-

ing model for different types of EC2 instances (m4.large,

m3.medium, and t2.medium). The cost Cvm(p) and memory

resources M of these instances are specified in EC2 pricing

[20]. Figure 1b compares the cost of cloud usage when an ap-

plication is deployed in AWS Lambda or in various instances

of EC2 for varying request rate and memory m of 512MB. The

x-axis is drawn on a logarithmic scale for better readability.

We observe that the FaaS model is cost effective when the

request rate is below 4 requests/second for the m4.large EC2

instance (the point where the m4.large and lambda cost curves

intersect). This represents the cost-indifference point (CIP)

beyond which the IaaS model is cheaper to be used. The CIP is

obtained by equating Equations (2) and (3). Figures 1c shows

a similar behavior when each request is using memory m of

3008MB.

Though the results shown here are obtained using AWS

pricing, the cost model is applicable to other cloud services

(e.g., from IBM and Google) that follow a similar pricing

model. To summarize the key takeaways from our analysis:

• The FaaS model is cheaper to use for low duty-cycle

application, i.e. when the average request rate N is below

the CIP. For higher values of N , IaaS is cheaper.

5Other resources, such as CPU, I/O, Network, etc., can be bottleneck in
the execution of a function. These resources can be substituted here to get
similar analysis.

3

• The value of CIP depends on the amount of resources

used by each request and the type of VM instance. A

tenant can find the appropriate resource configuration by

profiling the application or using inference approaches,

as proposed in [15], [24].

D. LIBRA’s Motivation

Demand for an application can significantly vary across

certain hours of the day and certain days of the week. Based

on our analysis in previous sections, an ideal hybrid load

balancing approach will have two main characteristics:

(a) It would continually monitor the demand for an appli-

cation and when the demand is below CIP, it will only

provision FaaS resources to cater to the demand as they

are more cost-effective in such a scenario. This is a

feature that previous hybrid approaches [2], [12] lack, as

they only use FaaS either for transient demand, or during

scaling out VM resources to avoid SLA violations.

(b) It should employ FaaS consistently for a low-rate bursty

portion of the demand that the system can not serve

using IaaS resources within the SLA. This would be

beneficial in two ways: first, it will reduce the SLA

violations, as sudden spikes in demand would be handled

by FaaS, which has negligible cold-start delays and can

natively scale-out. Second, consistently employing FaaS

for a certain portion of the demand can lead to significant

cost savings.

To demonstrate the cost saving of such an approach, we

leverage the cost analysis in Section II-C. Consider the sce-

nario shown in Figure 1b, where an application is running on

an EC2 instance of the type m3.medium and it has a steady

demand of 10 requests per second where each request requires

512MB of memory. In Figure 1d, we compare the cost of

serving all the demand or a certain portion of it using FaaS

while serving the rest through IaaS. We observe that a hybrid

approach, where around 20% requests are served by FaaS and

the remaining by IaaS is the most cost-effective as compared

to IaaS or FaaS only scenarios. This is because 20% of the

demand is below the CIP for this particular case and is cheaper

to be served through FaaS than spinning up a new VM which

would be underutilized.

III. LIBRA ARCHITECTURE

In this paper, we present LIBRA, a balanced approach that

leverages both IaaS and FaaS. It closely monitors the demand

from an application and provisions appropriate VM capacity

for the IaaS deployment to handle a portion of the requests

while directing the rest to be handled by the FaaS based

implementation of the application. Motivated by our analysis

in Section II, the design of LIBRA derives from the following

goals:

• An efficient load balancing approach would utilize FaaS

for bursty demand to avoid SLA violations, leveraging

FaaS’s quick provisioning time.

• As explained in Section II-C, a steady-rate of traffic

below a certain limit (CIP) can be cheaper to serve

through serverless functions (FaaS). An efficient load

balancing approach would leverage FaaS for a steady

(low) rate of traffic consistently to reduce the overall cost

of cloud usage.

The above two goals present load balancing between FaaS

and IaaS as a marginal analysis problem [25], where a user can

direct a small/bursty portion of the demand to FaaS (additional

activity) to be served cost effectively instead of provisioning

new VMs. This would not only reduce cost, but also lead

to lower SLA violations as VMs take significantly longer to

start (cold starts). Figure 2 gives an overview of our proposed

approach. The load balancing across the IaaS and FaaS based

implementations of the application is performed through a

Load Balancer, which also updates the traffic statistics and

share them with a Traffic Monitor using the control plane.

Based on the traffic demand, a Scaling Manager provisions

VM resources for IaaS and updates the Load Balancer to

enforce appropriate forwarding rules. Henceforth, we refer to

all three components of LIBRA as LIBRA Gateway (LG).

LIBRA can be deployed by a cloud/service provider as a value-

added service or can be directly leveraged by the customers.

In what follows, we explain each component of LIBRA in

detail.

Load

Balancer

IaaS FaaS

Traffic MonitorScaling

Manager

Scaling

Decision

Performance

 Stats

Traffic Stats
request

response

response

request

Control Plane Data Plane

Traffic Est.

vmreqs

LIBRA Gateway

Applications

request

Fig. 2: LIBRA architecture

A. Traffic Monitor

The Traffic Monitor (TM) continually receives traffic up-

dates from the Load Balancer. Using the historical data

of these updates, the TM estimates the future load for the

application. The forehand knowledge of traffic is critical

particularly for the VM-based resources, because they can

take up to several minutes to start and be ready to serve

application traffic. In the current implementation, we introduce

the notion of an epoch that represents a configurable unit-

time (e.g., 10 seconds or 1 minute). The LB continually

reports the number of requests received in an epoch to the

4

TM, which uses this information to estimate the future load.

Currently, the TM keeps track of the Exponentially Weighted

Moving Average (EWMA) and sample deviation of requests

received in previous epochs as given in Equations (6) and

(7), where reqscurr is the number of requests received in the

current epoch, α and β ∈ [0, 1] are configurable based on

how quickly a user wants the system to react in the face of

traffic variations. Our experiments have shown that EWMA

and sample deviation of the number of requests track well the

traffic variation6 as shown in Figure 3.

avg = (1− α)× avg + α× reqscurr (6)

std = (1− β)× std+ β × |reqscurr − avg| (7)

The TM reports the avg and std values to the Scaling Manager

every K epochs. The Scaling Manager then makes scaling

decisions as explained next.

B. Scaling Manager

The Scaling Manager (SM) is a crucial component of

our LIBRA architecture. It periodically receives the traffic

statistics from the Traffic Monitor and orchestrates resources in

the form of VMs and serverless functions to serve application

requests.

As one of the design goals of LIBRA is to keep the

serverless load below a certain threshold (CIP) to avoid

overpaying, and send the maximum stable load to provisioned

VMs for their cost effectiveness, our SM provisions VM (IaaS)

resources that can handle a request rate equal to (avg+φ·std),
with remaining requests directed to run as serverless functions

(FaaS). φ ∈ R is a configurable parameter of the LIBRA

system and is discussed later in Section III-D. Our experiments

(cf. Sections IV and V) have shown that any traffic above

(avg + φ · std) is either transient or cheaper to be served by

serverless functions. LIBRA provisions VMs cautiously based

on the estimated demand given by (avg + φ · std) so as to

avoid either under-provisioning VMs and then suffering from

higher startup-delays while spinning up additional VMs, or

over-provisioning VMs and paying unnecessary cost due to

VM under-utilization.

Algorithm 1 describes how the SM procures VM resources

for IaaS. In line 1, the function get active vms() returns the

current number of active VMs. Line 2 checks if the average

request rate is below the CIP threshold (obtained through

cost analysis). If it is, LIBRA shuts down and deallocates

all the currently provisioned VMs (line 3), as the current

demand can be met cost-effectively using only serverless

functions. In line 6, the algorithm calculates the number of

requests (rmax) that a VM with given resources can serve

while meeting the SLA. In the case of homogeneous VM

resources and consistent workload for each request, rmax

can be calculated by using Equation (5). In the case of

variable workload, adaptive controllers (e.g., PID [26]) can

be used to set rmax. A proportional–integral–derivative (PID)

controller can adapt rmax based on the error between the

6A LIBRA user can employ other traffic prediction models as well.

Algorithm 1 LIBRA’s Scaling Algorithm

Input:

avg, std: EWMA and sample deviation reported by the Traffic

Monitor (TM)

VMres: resources available in each VM instance

reqres: resources required to serve one application request

reqtime: average request service time

cip: Cost Indifference Point

φ: number of sample deviations beyond average demand

Output:

vmreqs // request rate that provisioned VMs can handle

1: active vms = get active vms()
// returns the number of active VMs

2: if avg < cip then

3: remove vms(active vms)

// removes all VM instances

vmreqs = 0

4: return

5: end if

6: rmax = vm capacity(VMres, reqres, reqtime)

// get maximum number of requests a VM can serve

7: vmreqs = avg + φ · std
8: num instances = ⌈(vmreqs/rmax)⌉
9: vm diff = num instances - active vms

10: if vm diff > 0 then

11: add vms(vm diff) // adds VM instances

12: else

13: remove vms(vm diff) // removes VM instances

14: end if

target and measured response/service time. In lines 7-8, we

obtain the number of VM instances that are needed to cater

to a demand vmreqs = avg + φ · std, as instantaneous

requests beyond that value are considered transient and will

be handled by serverless functions. The functions add vms
and remove vms (lines 11 and 13) implement the VM-cloud

(IaaS) interface to allocate or deallocate VMs to achieve the

desired num instances (line 8). The initial provisioning of

VMs is performed based on user configurations similar to

other autoscaling services [27]. Moreover, if the decision is

to add more VMs, the Scaling Manager waits until the VMs

are in ready state before sending a vmreqs update to the Load

Balancer.

C. Load Balancer

The Load Balancer (LB) receives requests from the end-

users and forwards them to the appropriate resources, either

VMs (IaaS) or serverless (FaaS). It also keeps track of the

requests received in an epoch and periodically notifies the

Traffic Monitor. Moreover, whenever the Scaling Manager

makes a scaling decision, it reports the new value of vmreqs to

the Load Balancer as the Scaling Manager provisions VMs to

accommodate a request rate of vmreqs. From queuing theory

[28], to ensure stable (predictable) performance and small

5

queuing delays, the request rate to the provisioned VMs should

be lower than the service rate given by the VM provisioned

rate of vmreqs. This keeps the aggregate utilization of the

provisioned VMs below one. Consequently, our LB directs

only a fraction ρ of the request rate, i.e., ρ ·vmreqs to the VM

resources. This fraction ρ of provisioned VM capacity that can

be used to serve requests is a configurable parameter of LIBRA

and discussed in detail in Section III-D.

The LB adopts a forwarding approach that directs requests

to VMs (IaaS) first, which has two key benefits: 1) The VMs

are already in ready state and will not incur any cold-start

delays, and 2) ready VMs are cheaper compared to serverless.

D. LIBRA Parameters

Our LIBRA approach has the following configurable pa-

rameters that an administrator can tweak to maximize their

gain whether it is performance, cost, or both. We studied the

behavior of these parameters in simulation and experimentally,

and here we briefly summarize the effect of the following

parameters and their recommended settings.

1) EWMA Weights: The Traffic Monitor in LIBRA uses

EWMA to monitor the average rate of requests and sample

deviation. The weights α and β given to the most recent

number of requests observed over the current epoch are

configurable parameters. A high weight value can lead to

a quick response to a sudden increase in demand, resulting

in over-provisioning of VM resources if the increase were

transient. On the other hand, a low weight value can lead

to a slow response to a sudden increase in demand, resulting

in under-provisioning of VM resources if the decrease were

persistent, which increases the usage of serverless functions

and results in a higher cost.

2) Scaling Decision Interval: The Scaling Manager makes

scaling decisions every K epochs. A smaller value of K (e.g.,

less than the startup delay of VMs) can result in back-to-

back scaling decisions without waiting for the system to react

and reach equilibrium. A large value of K results in longer

intervals between scaling decisions, hence slower adaptation

leading to missing potential cost savings. The scaling deci-

sion interval should be larger than the startup delay of the

VM instances being used. This is because when the Scaling

Manager makes the decision to scale out, it waits for the newly

added VM instances to be in ready state before informing the

Load Balancer of the newly provisioned VM capacity. In our

experiments we set the scaling decision interval to be three

times the VM startup delay.

3) VM Utilization: As described in Section III-C, the

Load Balancer only utilizes a certain proportion (ρ) of the

provisioned VMs. The goal is to make sure that the VMs

serve the requests without SLA violations (cf. Section III-C).

In our experiments we set this parameter ρ to 80%.

4) Traffic Estimation: To estimate traffic demand, LIBRA

uses the EWMA and sample deviation to obtain (avg+φ·std),
where φ ∈ R and its value depends on the fluctuations in

demand. In LIBRA, IaaS resources are provisioned for (avg+
φ · std) demand. Hence, a higher value of φ will cause more

aggressive provisioning of VMs, which can potentially lead

to VM under-utilization. On the other hand, a lower value of

φ can lead to more FaaS usage which can potentially lead to

higher cost as serving requests by FaaS is expensive.

In the next two sections, we evaluate LIBRA using simula-

tions and on Amazon AWS.

IV. SIMULATION MODEL & RESULTS

LIBRA closely monitors the demand for an application

and consequently provisions VM resources, while the tran-

sient spikes and small portion of the demand are served by

serverless functions. This approach results in little to no SLA

violations while also reduces the cost of cloud usage for

the tenant. To evaluate the long-term efficacy of LIBRA, we

modeled 7 various cloud services after Amazon Web Services

(AWS) [30]. These include IaaS, FaaS, Load Balancer, and

Autoscaler. Using real traces, we evaluated LIBRA against

different approaches: VM over-provisioning, FaaS-only, and

provisioning of VM resources using the autoscaler.

A. Modeling Cloud Services

We modeled IaaS and FaaS (and related services) after AWS

EC2 and Amazon Lambda, respectively.

1) IaaS: Our modeled IaaS has various resource types to

offer for application deployment. Different VM instance types

have different cold-start delay depending on the size of the

instance and resource such as memory. Moreover, our pricing

model follows the AWS EC2 pricing model, where users

are charged based on partial usage, i.e. on seconds basis as

specified in [20]. Any instance can host a pre-defined number

of requests based on the resources available in the instance

and desired SLA. Hosting more requests on an instance can

lead to performance degradation and potential SLA violations.

The usage cost is calculated according to Equation (3).

Load Balancer: Production-ready applications typically use

more than one VM. Incoming requests are distributed among

them in a Round Robin fashion. If all the VM instances already

have a pre-defined number of requests running, any subsequent

request is queued and served as soon as any instance can

accommodate it.

Autoscaler: Our modeled autoscaler works similarly to

Amazon EC2 Auto Scaling [27] and allows users to define

auto-scaling policies such as scale-in/scale-out thresholds,

scaling groups, and minimum/maximum number of instances.

Moreover, our autoscaler can use a threshold on metrics,

such as average memory utilization or request count on each

instance, to make scaling decisions.

2) FaaS: To model FaaS, we deployed various types of

application function on Amazon Lambda and found the re-

lationship between the configurable resources (e.g., memory)

and execution time. This follows an exponentially decay model

as given by Equation (1). Other approaches (e.g., [15], [22])

have reported similar execution patterns. We also use Amazon

7The LIBRA simulator and AWS code is available at [29].

6

Lambda’s pricing model where, based on the configured re-

sources and execution time, usage cost is calculated according

to Equation (2).

3) Simulation Parameters: For our evaluation, we chose

the “large” EC2 instance type m4.large, which has 8.0 GB

of memory and 0.1 dollars per hour cost. We ran multiple

instances of type m4.large and noted that the provisioning

time (cold-start delay) to obtain an instance is about 100

seconds. Each request should have at least 512MB of memory

to complete in one second (SLA) on both IaaS and FaaS 8. For

LIBRA parameters, we used 0.2 as the EWMA weight, 300

seconds as the scaling decision interval (which is 3× the cold-

start of the VM instance being used), VM utilization threshold

ρ = 80%, and traffic estimation parameter φ = 1.

B. Log Traces

We used WITS [33], Berkeley [34], and synthetic traces to

evaluate the efficacy of LIBRA. These traces have also been

used to evaluate similar approaches [12], [35]. We utilize a 12-

hour long segment from the traces to generate the workload

for our simulation. Each request is assumed to have a constant

and equal service (execution) time when served on either the

IaaS or FaaS based implementation. Our simulator takes into

account the cold-start of VMs under IaaS. We also assume that

the serverless functions under FaaS have a minimal cold-start

delay that would not affect the performance of an application

with relatively high popularity as shown in [11]. While LIBRA

produced similar results for all traces, due to space limitation,

we only present results for the WITS trace. Figure 3 shows the

12-hour snippet of a WITS trace of the number of requests per

epoch (second), along with the EWMA. Traces were generated

by counting the number of HTTP requests during every second

in TCP dumps available at [33]. Despite the high variation of

the demand, EWMA accurately tracks the dynamicity of the

trace.

0 10000 20000 30000 40000
time (s)

0

200

400

600

800

1000

1200

#
 o

f
re

q
u
e
st

s

requests

EWMA

Fig. 3: WITS trace and EWMA

C. Resource Provisioning & Deployment Policies

As discussed in Section III, LIBRA’s main goal is to

utilize both FaaS and IaaS to minimize the overall cost while

8For IaaS, a user can specify resources for each container executing the
request as documented in [31], [32].

at the same time meeting the performance (execution time)

requirement of the application. LIBRA leverages the best of

both cloud services: the quick provisioning time of serverless

functions and the low cost of provisioned VM resources. We

compare LIBRA’s balanced approach to the following policies:

1) Over-provisioning (MAX): Cloud applications have strict

SLAs and not meeting their performance constraints can result

in bad user experience and potentially loss of revenue. To

avoid potential SLA violations, the tenant could opt to over-

provision the VM resources. We simulate this scenario by

scanning the whole demand trace and provisioning the VM

resources based on the maximum number of requests received

during a second (i.e., the peak rate). While such approach

would avoid SLA violations, allocated VM resources will be

underutilized and the client would incur higher costs.

2) Autoscaling (AUTO): Autoscaling is a popular service

provided by major cloud providers. In Autoscaling, the per-

formance of the currently allocated resources (e.g., VMs), is

monitored based on some metric. The performance metrics can

vary based on the cloud provider, but some examples include

memory/CPU utilization or request/connection count on each

host. If the metric exceeds a certain threshold, new resources

are added to the system to avoid potential overloading of

current resources and subsequent degradation of performance.

If the metric falls below a certain threshold, resources are

removed to avoid under-utilization.

3) Spock: Previous approaches, such as Spock [12] and

MArk [2] reduce SLA violations due to VM start-up delays

by directing demand to serverless functions while VMs are

being provisioned. Unlike LIBRA, Spock-like schemes do not

consistently and simultaneously use serverless functions to

serve transient demand and reduce overall cost. We simulated

this by directing the excess portion of the demand to FaaS

during scale-out events.

4) FaaS only: The application is deployed on a serverless

platform and all requests are served by serverless functions.

D. Simulation Results

1) Cost and SLA violations: Figure 4a compares the cost

and performance of the aforementioned resource provisioning

policies with LIBRA. The x-axis represents the different

approaches described above, the y-axis (left) represents the

incurred cost normalized to that of LIBRA, and the y-axis

(right) reports the percentage of SLA violations. LIBRA’s

cost also includes the cost of the VM instance used to

deploy the LIBRA Gateway (cf. Figure 2). As expected, over-

provisioning (MAX) leads to zero SLA violations, but incurs

the highest cost. The autoscaling approach (AUTO) reduces

cost significantly but introduces significant SLA violations.

This is due to the fact that VMs have high cold-start de-

lays, and while a new VM is being set up to share the

demand, existing VM instances get saturated, which leads to

performance degradation and SLA violations. We note that we

have experimented with various thresholds for the utilization

metrics used by autoscaling. However, we have observed that

either the system performs better at the expense of a much

7

LIBRA FaaS MAX SPOCK AUTO

0.0

0.5

1.0

1.5

2.0

2.5

3.0
No

rm
al

ize
d

Co
st

0

2

4

6

8

10

%

Normalized Cost
SLA Violations

(a) LIBRA and other resource
provisioning policies

0 10000 20000 30000 40000
time (s)

0

5

10

15

20

25

30

35

40

45

#
 o

f
V

M
s

Optimal

LIBRA

(b) LIBRA’s VM provisioning

10000 20000 30000 40000
time (s)

0

50

100

150

200

250

300

A
v
e
.
R

e
q
u
e
st

 R
a
te

Total Requests

IaaS Load

FaaS Load

(c) LIBRA’s request distribution
among available resources

-1 0 1 2 3 4
φ value

0

5

10

15

20

25

30

35

co
st

 (
$
)

IaaS cost

FaaS cost

(d) Cost for different values of φ

Fig. 4: Cost and performance of LIBRA in simulated cloud environment

higher cost or the system has lower cost at the expense of a

much worse performance (higher SLA violations). Compared

to autoscaling, Spock reduces SLA violations by more than

35% at about the same cost. Notice that consistent with the

original study [12], Spock reduces SLA violations but does

not completely eliminate them. LIBRA yields the lowest cost

– 15% less cost than autoscaling/Spock and cuts the cost by

more than half compared to serverless-only (FaaS) or over-

provisioning (MAX). In our simulation, we assume that a

serverless function has resources configured correctly so that

each request always meets the SLA [15]. Thus, a serverless-

only deployment yields zero SLA violations albeit at a higher

cost. Similarly, LIBRA yields zero SLA violations. However,

LIBRA reduces the overall cost by always directing a portion

of the demand to VMs that are provisioned to meet the SLA,

while the rest of the demand is directed to serverless functions

that are also configured to meet the SLA.

2) VM Provisioning & Request Distribution: LIBRA’s main

goal is to cautiously provision resources in the VM cloud

(IaaS) to avoid under/over-utilization while simultaneously

serving low-rate and sudden spikes in demand using serverless

functions (FaaS). Figure 4b shows how LIBRA accurately

tracks the incoming load, provisions VM resources, and avoids

over-provisioning. This is observed by the similar behavior of

LIBRA in terms of the number of VMs provisioned (green

solid curve) throughout the duration of the simulation and

the ideal (offline) case (blue dashed curve) of provisioning

the number of VM instances assuming perfect knowledge of

future demand. The points on both curves represent scaling

decisions taken every K = 300 seconds (cf. Section III-D).

Figure 4c shows the average rate of requests for the portion

of the demand forwarded to the VM instances (IaaS) and

the rest of the demand directed to serverless functions (FaaS)

every 300 seconds. We observe that a consistent majority of

the load is served by VMs (IaaS) whereas a small amount of

the load with temporary peaks is handled by serverless (FaaS).

3) VM Uptime & Cost Breakdown: In Figure 5a, we

compare the total uptime of all VMs used to run the application

under various approaches. LIBRA cuts the VM uptime by

half compared to autoscaling and Spock. This is because (1)

LIBRA only scales out when the demand persists for longer

time. LIBRA is able to identify transient demand and avoid

reacting to it by using serverless functions (FaaS) rather than

adding new VM instances (IaaS); and (2) LIBRA can add

any arbitrary number of VMs to the active VMs when scaling

out, while autoscaling adds or removes a user-configured

number of instances (referred to as “scaling group”). Figure 5b

compares the cost breakdown across autoscaling, Spock, and

LIBRA. Autoscaling has zero FaaS cost since VMs are the

only resources used to serve the application demand. Spock

employs FaaS when scaling out, only to hide VM startup delay,

so the FaaS usage is really small (≈ 1%). LIBRA consistently

uses serverless functions to serve a portion of the demand. The

FaaS cost contributes around 40% of the total cost in LIBRA’s

case. Despite higher FaaS cost, the overall cost of LIBRA is

smallest. LIBRA intelligently uses FaaS for a portion of the

demand that is either below CIP or transient, since the cost of

new VM instances for that portion of the demand would have

been higher. Note that the cost of LIBRA includes that of the

LIBRA Gateway (LG), the added cost of running the LIBRA

system.

LIBRA AUTO SPOCK0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d
Ti
m
e

(a) VM uptime

LIBRA AUTO SPOCK0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

No
rm

al
ize

d
Co

st

FaaS Cost
LG Cost

IaaS Cost

(b) Cost breakdown

Fig. 5: VM usage and cost breakdown

4) Traffic Estimation: Recall that LIBRA provisions IaaS

resources for a request rate of vmreqs = (avg + φ · std).
The actual request rate directed to the provisioned VMs is

ρ · vmreqs (ρ < 1), while the remaining requests (in each

epoch) are directed to FaaS where they are served within the

SLA but at a higher cost. The value of φ can be adapted based

on the particular fluctuations in demand. Tuning φ affects the

cost but not the performance of an application. This is because

the SLA is met whether LIBRA directs the request to the

provisioned VMs or to FaaS, however FaaS is more costly. For

the WITS traces used in our evaluation, the effect of different

values of φ on the cost is shown in Figure 4d. We observe

that a lower value of φ leads to more FaaS usage and hence

higher overall cost, whereas a higher value of φ causes over-

provisioning of VMs, which leads to VM under-utilization and

8

hence higher cost. Here, φ = 1 gives the least cost.

V. LIBRA ON AWS

To validate our simulation results from Section IV, where

LIBRA was shown to be effective in reducing both cloud-

usage cost and SLA violations, we implemented LIBRA

to perform load balancing for an application deployed on

Amazon AWS Cloud, i.e. EC2 for IaaS and Lambda for FaaS.

A. Application

The application is an image manipulation application writ-

ten in Python. On Amazon Lambda, we are able to deploy

the application as a single function. While we expect similar

results for multi-function applications, our choice of single-

function application is inspired by many use cases such as

ML inference models [2], [12], [22], IoT and computer vision

applications [36] which can be usually deployed as a single

function. To deploy the application on EC2 VM instances, we

used a python multi-threaded HTTP server library. We ran it

on a t3.medium [37] EC2 instance type with Ubuntu Server

18.04 LTS operating system, two 2.5 GHz vCPU, and 4 GB

memory.

B. Application Profiling & Lambda Resources

As described in Section III-B, LIBRA’s Scaling Manager

uses the maximum number of requests, rmax, that a VM

instance can handle, to calculate the required number of

instances. To obtain rmax for this evaluation, we deployed our

application on a t3.medium instance, profiled its performance,

and obtained rmax that meets the SLA. We take the SLA to

be one second of execution time serving a request. Profiling

an application on a given VM instance is a one-time task and

a developer can perform this prior to production deployment.

For FaaS deployment, we invoked the function with various

memory configurations and picked the memory setting that

gave the least cost while meeting the SLA.

C. Setup & Implementation

To obtain a consistent network environment for our evalua-

tion on AWS, we deployed an application client on an EC2 in-

stance, which will generate HTTP requests for the application.

We compare LIBRA to the same four resource provisioning

and deployment strategies described in Section IV-C. We

needed to modify the implementations of LIBRA, Autoscaling,

and Spock, as follows:

1) LIBRA on AWS: We deployed the LIBRA Gateway (LG)

on an EC2 instance of the type t2.micro. The LG distributes

requests between IaaS based resources (EC2 VMs) and FaaS

(AWS Lambda functions). Within IaaS, we used the AWS

Application Load Balancer (ALB) [38] to distribute requests

among the active VM instances evenly, i.e. in a Round Robin

fashion.

2) Autoscaling on AWS: We used EC2’s autoscaling ser-

vice, which is a threshold-based scaling service. The AWS

CloudWatch Alarm was used to monitor RequestCountPerTar-

get metric to make scaling decisions. Again, ALB was used

to distribute requests to the VMs.

3) Spock on AWS: An alarm from AWS CloudWatch trig-

gers the scale-out or scale-in events. When a scale-out event

is triggered, new VM instances are provisioned. During this

VM provisioning time, the system sends the extra requests,

that cannot be served by the active VM instances, to the

serverless functions. Once the new VM instances are ready,

all requests are forwarded to the VMs. Thus, Spock attempts

to use serverless functions (FaaS) only to hide VM startup

delays.

D. Results & Discussion

For our AWS experiments, to reduce real load, we use a

scaled-down version of the first 1800 seconds of the WITS

trace shown in Figure 3. In particular, we reduce the rate of

requests by a factor of 16.

LIBRA FaaS MAX SPOCK AUTO

0.0

0.5

1.0

1.5

2.0

No
rm

al
iz
ed

 C
os
t

0

5

10

15

20

25

30

%

Normalized Cost
SLA Violations

(a) Cost and SLA violations for
LIBRA vs. other policies

0.0 0.5 1.0 1.5 2.0
Turn around time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

LIBRA
FaaS
MAX
SPOCK
AUTO

(b) Response time distribution

Fig. 6: Performance of LIBRA on AWS

1) Cost and SLA Violations: We compare the cost and

performance of LIBRA versus other resource provisioning

and deployment strategies. The results are consistent with our

simulation results. Figure 6a shows that LIBRA yields the

lowest cost with very low amount of SLA violations. LIBRA

reduces the SLA violations (by more than 85%) and cost (up

to 20%) when compared to auto-scaling and Spock. LIBRA’s

cost also includes the cost of deploying the LIBRA Gateway

on an EC2 instance. Max-provisioning and serverless-only

deployment yield the lowest SLA violations but incur up to

50% increase in cost. We observe that FaaS, LIBRA, and max-

provisioning, all have a little amount of SLA violations. This is

because unlike our simulation model, in a real setup, factors

such as co-location, cold-starts for serverless functions, and

underlying resource contention for VMs, can introduce slight

variation in the performance of an application. For LIBRA, a

lower value for the VM utilization parameter ρ (discussed in

Section III-D3) can mitigate these SLA violations.

While Spock reduces SLA violations by 40% compared

to autoscaling, about 15% of the requests fail to complete

within the SLA. This can be explained by Spock’s reactive

scheme, where scaling out is triggered when VM resources

are saturated, resulting in SLA violations. On the other hand,

LIBRA avoids saturating the VM instances by directing excess

load to serverless functions. If the load is not transient and the

demand stays higher for a longer period, LIBRA increases the

number of VM instances at the next scaling decision.

9

Figure 6b shows the CDF of completion time of each

request. The over-provisioning policy gives the best perfor-

mance in terms of keeping execution time really low, as

expected. FaaS has the most consistent performance, i.e. the

completion time is always between 0.8s to 1s. This is due to

the fact that each request is executed in a dedicated sandbox

environment with dedicated resources, such as memory, so the

chance of performance fluctuation is lower. The performance

of a serverless function is primarily affected by cold-start

delay [22], which is negligible and can be as low as 10s of

milliseconds for serverless functions written in Python [11].

LIBRA AUTO SPOCK0.0

0.5

1.0

1.5

2.0

2.5

No
rm

ali
ze
d
Tim

e

(a) VM uptime

LIBRA AUTO SPOCK0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

No
rm

ali
ze

d
Co

st

FaaS Cost
LG Cost

IaaS Cost

(b) Cost breakdown

Fig. 7: VM usage and cost breakdown

2) VM Uptime & Cost Breakdown: Figure 7 confirms the

benefit of LIBRA by illustrating the cost breakdown. This

is consistent with our simulation results. Figure 7a shows

the uptime of VM instances used to run the application for

Spock, Autoscaling, and LIBRA. LIBRA is able to closely

monitor the demand and provision required VM resources

without over-provisioning, which results in lower overall VM

uptimes and cost. Figure 7b shows the cost breakdown of these

approaches. LIBRA has the lowest overall cost (including the

cost to deploy LG), with lowest IaaS cost but highest FaaS

cost. LIBRA uses serverless functions more consistently and

effectively, i.e. for transient demand or portion below CIP,

which results in higher usage of FaaS, and lower usage of

IaaS.

E. Performance Overhead & LIBRA Scalability

LIBRA works as a legacy load balancer and directs re-

quests to appropriate resources, introducing overhead no more

than legacy load balancers. At the same time, other LIBRA

operations, i.e. scaling and traffic monitoring, occur in the

background and do not impact the real-time processing of

requests. The LIBRA Gateway has a small computational

footprint, and hence a small cost. Various components of the

LIBRA Gateway can be implemented as serverless functions,

where scalability is taken care of by the cloud provider.

Alternatively, the LIBRA Gateway can be implemented as one

service and deployed using VM instances and the application

administrator can rely on the cloud provider’s scaling services

such as AWS auto-scaling.

VI. RELATED WORK

In the past couple of years, serverless computing has been

extensively studied to deploy cloud applications, such as

ML applications [2], [12], [39], video/data processing [3],

[4], [40], IoT [41], scientific workflows [5], biomedical ap-

plications [42]–[44] and to solve various mathematical and

optimization problems [45]–[47].

CherryPick [24] helps the developer find the best VM

instance type using statistical learning techniques. Previous

approaches use various ML and learning-based approaches

to configure serverless functions [15], [48], [49] to optimize

cost and performance. Costless [39] decomposes a serverless

application across edge and core cloud to minimize cost

and meet performance constraints. CloudCmp [50] performs

comprehensive measurement studies on various commercial

clouds so as to find a suitable cloud provider for a given appli-

cation. Similarly, cluster management systems, such as Google

Borg [51] and Mesos [52], orchestrate and allocate resources

in the cloud for various applications. Google has developed

a machine type recommendation system [53] that helps a

user find the suitable instance type that maximizes resource

utilization. Moreover, most of the commercial cloud providers

provide autoscaling services (reactive in nature) to manage

the virtual resources, e.g., AWS’s EC2 autoscaling [27] and

Google autoscaling [54]. Similar to LIBRA, other approaches

use various prediction models to predict the demand for an

application and orchestrate cloud resources [55]–[59]. The

aforementioned approaches only manage resources within one

type of service, while LIBRA orchestrates resources across

two different services, i.e., an IaaS and a FaaS.

Previous works have used serverless functions to hide VM

startup delays for ML and other applications while scaling

out VM-based resources [2], [12], [13]. In contrast, LIBRA

uses serverless functions as an alternative cloud service to run

applications, and based on the demand, can decide to use either

one or both services to optimize both cost and performance.

VII. CONCLUSION AND FUTURE WORK

We presented LIBRA, a load balancing approach that si-

multaneously uses both IaaS and FaaS cloud services to cater

to the dynamic demand of applications. Our approach can be

employed by cloud providers as a value-added service or used

by end-users directly. Our evaluation of LIBRA in simulations

and on AWS shows its clear advantage over other resource

provisioning policies in reducing both cost and SLA violations.

In this paper, LIBRA utilizes IaaS and FaaS services avail-

able from one cloud provider in support of single-function

applications. Future work includes extending LIBRA to ac-

commodate applications that consist of chains of functions,

leveraging spot instances, integrating with platforms such

as Kubernetes, and utilizing services from multiple cloud

providers.

ACKNOWLEDGEMENT

This work has been supported by National Science Foun-

dation Award CNS-1908677.

10

REFERENCES

[1] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of
serverless computing,” Communications of the ACM, 2019.

[2] C. Zhang, M. Yu, W. Wang, and F. Yan, “MArk: Exploiting Cloud
Services for Cost-Effective, SLO-Aware Machine Learning Inference
Serving,” in USENIX ATC, Renton, WA, 2019.

[3] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter, “Sprocket: A
Serverless Video Processing Framework,” in ACM SoCC, 2018.

[4] M. Zhang, Y. Zhu, C. Zhang, and J. Liu, “Video Processing with
Serverless Computing: A Measurement Study,” in ACM NOSSDAV,
Amherst, MA, 2019.

[5] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless
execution of scientific workflows: Experiments with HyperFlow, AWS
Lambda and Google Cloud Functions,” Future Generation Computer

Systems, 2017.

[6] H. Shafiei, A. Khonsari, and P. Mousavi, “Serverless Computing: A
Survey of Opportunities, Challenges and Applications,” arXiv preprint

arXiv:1911.01296, 2019.

[7] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski et al., “Serverless
computing: Current trends and open problems,” in Research Advances

in Cloud Computing. Springer, 2017, pp. 1–20.

[8] M. Yan, P. Castro, P. Cheng, and V. Ishakian, “Building a chatbot with
serverless computing,” in ACM 1st International Workshop on Mashups

of Things and APIs, 2016, p. 5.

[9] G. C. Fox, V. Ishakian, V. Muthusamy, and A. Slominski, “Status of
serverless computing and function-as-a-service (FaaS) in industry and
research,” arXiv preprint arXiv:1708.08028, 2017.

[10] J. Spillner, “Transformation of Python Applications into Function-as-a-
Service Deployments,” arXiv preprint arXiv:1705.08169, 2017.

[11] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking Behind
the Curtains of Serverless Platforms,” in 2018 USENIX ATC, Boston,
MA.

[12] J. R. Gunasekaran, P. Thinakaran, M. T. Kandemir, B. Urgaonkar,
G. Kesidis, and C. Das, “Spock: Exploiting Serverless Functions for
SLO and Cost Aware Resource Procurement in Public Cloud,” in IEEE

CLOUD, 2019.

[13] J. H. Novak, S. K. Kasera, and R. Stutsman, “Cloud Functions for Fast
and Robust Resource Auto-Scaling,” in COMSNETS, 2019.

[14] “AWS Lambda Pricing,” https://aws.amazon.com/lambda
/pricing/, 2020.

[15] N. Akhtar, A. Raza, V. Ishakian, and I. Matta, “COSE: Configuring
Serverless Functions using Statistical Learning,” in IEEE INFOCOM,
2020.

[16] “IBM Function Pricing,” https://cloud.ibm.com/functions/learn
/pricing, 2020.

[17] “Google Function Pricing,” https://cloud.google.com/functions/ pricing,
2020.

[18] “Azure Function Pricing,” https://azure.microsoft.com/en-
us/pricing/details/functions/, 2021.

[19] “Microsoft Azure,” https://azure.microsoft.com/en-us/services/virtual-
machines/, 2020.

[20] “EC2 Pricing,” https://aws.amazon.com/ec2/pricing/, 2020.

[21] “IBM Computer,” ibm.com/cloud/pricing/list, 2021.

[22] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving deep learning
models in a serverless platform,” in IEEE IC2E, 2018.

[23] A. Allen, Probability, Statistics, and Queueing Theory, ser. Computer
Science and Scientific Computing. Elsevier Science, 1990.

[24] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “CherryPick: Adaptively Unearthing the Best Cloud Con-
figurations for Big Data Analytics,” in NSDI, Boston, MA, 2017.

[25] S. A. Greenlaw, E. Dodge, C. Gamez, A. Jauregui, D. Keenan, D. Mac-
Donald, A. Moledina, C. Richardson, D. Shapiro, and R. Sonenshine,
Principles of Economics 2e, 2nd ed. Openstax, 2017.

[26] G. F. Franklin, D. J. Powell, and A. Emami-Naeini, Feedback Control

of Dynamic Systems, 4th ed. USA: Prentice Hall PTR, 2001.

[27] “Amazon Auto Scaling,” https://aws.amazon.com/ec2
/autoscaling/, 2018.

[28] C. Ayimba, P. Casari, and V. Mancuso, “Adaptive Resource Provisioning
based on Application State,” in International Conference on Computing,

Networking and Communications (ICNC), 2019, pp. 663–668.

[29] “LIBRA Code,” https://github.com/aliraza0337/LIBRA, 2021.

[30] “Amazon Web Services,” https://aws.amazon.com/, 2020.

[31] “Kubernetes per Request,” https://kubernetes.io/docs/concepts/
configuration/manage-resources-containers/, 2021.

[32] “Docker Resources,” https://docs.docker.com/config/containers/
resource constraints/, 2021.

[33] “WITS Trace,” https://wand.net.nz/wits/catalogue.php, 2020.
[34] “Berkeley Trace,” https://www.comp.nus.edu.sg/∼cs5222/simulator

/traces/berkeley/index.htm, 2021.
[35] “Spock Simulator,” https://github.com/jashwantraj92/spock, 2020.
[36] “Amazon Rekognition Image,” https://github.com/aws-samples/amazon-

rekognition-image-for-box-skills, 2021.
[37] “Amazon EC2 Instances,” https://aws.amazon.com/ec2/instance-types/,

2019.
[38] “AWS Load Balancer,” https://docs.aws.amazon.com/elasticloadbalanci

ng/latest/application/introduction.html, 2019.
[39] T. Elgamal, “Costless: Optimizing Cost of Serverless Computing through

Function Fusion and Placement,” in IEEE/ACM SEC, Bellevue, WA,
2018.

[40] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy
the Cloud: Distributed Computing for the 99%,” in SOCC, New York,,
2017.

[41] D. Pinto, J. P. Dias, and H. Sereno Ferreira, “Dynamic Allocation
of Serverless Functions in IoT Environments,” IEEE EUC, Bucharest,

Romania, 2018.
[42] B. Lee, M. Timony, and P. Ruiz, “DNAvisualization.org: a serverless web

tool for DNA sequence visualization,” Nucleic Acids Research, vol. 47,
06 2019.

[43] D. Kumanov, L.-H. Hung, W. Lloyd, and K. Y. Yeung, “Serverless com-
puting provides on-demand high performance computing for biomedical
research,” arXiv preprint arXiv:1807.11659, 2018.

[44] L.-H. Hung, D. Kumanov, X. Niu, W. Lloyd, and K. Y. Yeung, “Rapid
RNA sequencing data analysis using serverless computing,” bioRxiv,
2019.

[45] A. Aytekin and M. Johansson, “Harnessing the Power of Serverless Run-
times for Large-Scale Optimization,” arXiv preprint arXiv:1901.03161,
2019.

[46] V. Shankar, K. Krauth, K. Vodrahalli, Q. Pu, B. Recht, I. Stoica,
J. Ragan-Kelley, E. Jonas, and S. Venkataraman, “Serverless Linear
Algebra,” in 11th ACM SoCC, Virtual Event, USA, 2020.

[47] S. Werner, J. Kuhlenkamp, M. Klems, J. Müller, and S. Tai, “Serverless
Big Data Processing using Matrix Multiplication as Example,” in IEEE

International Conference on Big Data (Big Data), 2018, pp. 358–365.
[48] L. Schuler, S. Jamil, and N. Kühl, “AI-based Resource Allocation:

Reinforcement Learning for Adaptive Auto-scaling in Serverless En-
vironments,” arXiv preprint arXiv:2005.14410, 2020.

[49] S. Eismann, L. Bui, J. Grohmann, C. L. Abad, N. Herbst, and S. Kounev,
“Sizeless: Predicting the optimal size of serverless functions,” arXiv

preprint arXiv:2010.15162, 2020.
[50] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: Comparing

Public Cloud Providers,” in ACM IMC, Melbourne, Australia, 2010.
[51] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and

J. Wilkes, “Large-scale Cluster Management at Google with Borg,” in
EuroSys, Bordeaux, France, 2015.

[52] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A Platform for Fine-grained
Resource Sharing in the Data Center,” in NSDI, Boston, MA, 2011.

[53] “Google Cloud Recommendations,” https://cloud.google.com/compute/
docs/instances/apply-sizing-recommendations-for-instances, 2018.

[54] “Google Auto Scaling,” https://cloud.google.com/compute/
docs/autoscaler, 2018.

[55] W. Fang, Z. Lu, J. Wu, and Z. Cao, “RPPS: A Novel Resource
Prediction and Provisioning Scheme in Cloud Data Center,” in IEEE

SCC, Honolulu, HI, 2012.
[56] N. Roy, A. Dubey, and A. Gokhale, “Efficient Autoscaling in the Cloud

Using Predictive Models for Workload Forecasting,” in IEEE CLOUD,

Washington, USA, 2011.
[57] L. Aniello, S. Bonomi, F. Lombardi, A. Zelli, and R. Baldoni, “An

architecture for automatic scaling of replicated services,” in NETYS,
2014.

[58] A. Y. Nikravesh, S. A. Ajila, and C. Lung, “Towards an Autonomic
Auto-scaling Prediction System for Cloud Resource Provisioning,” in
IEEE/ACM SEAMS, Firenze, Italy, 2015.

[59] A. H. Mahmud, Y. He, and S. Ren, “BATS: Budget-Constrained Au-
toscaling for Cloud Performance Optimization,” in IEEE MASCOTS,
Atlanta, GA, 2015.

11

