
BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

ORCHESTRATION AND MANAGEMENT OF APPLICATION

FUNCTIONS OVER VIRTUALIZED CLOUD

INFRASTRUCTURES

by

NABEEL AKHTAR

B.Sc., Lahore University of Management Sciences (LUMS), 2011
M.S., Koç University, 2013

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2019

c© Copyright by
NABEEL AKHTAR
2019

Approved by

First Reader
Abraham Matta, PhD
Professor of Computer Science

Second Reader
Vatche Ishakian, PhD
Assistant Professor of Computer Information Systems
Bentley University

Acknowledgments

First and foremost, I would like to thank my advisor Prof. Ibrahim Matta, who has given

me tremendous support during my PhD journey. Ibrahim is not only a superb advisor, but

also a great collaborator and a considerate friend, and I feel very lucky to have him.

I also thank my thesis committee members, Azer Bestavros, Rich West, Jonathan Ap-

pavoo, and Vatche Ishakian, for reading my thesis and providing helpful comments.

I thank my fellow lab-mates and friends, who made the PhD journey fun and kept me

going during my lowest moments.

I also thank my family for their generous support. Last but not least, I must express

my deepest appreciation and greatest admiration to my lovely wife, Afifa Mehmood, for

her endless support during my PhD journey.

iv

ORCHESTRATION AND MANAGEMENT OF APPLICATION

FUNCTIONS OVER VIRTUALIZED CLOUD

INFRASTRUCTURES

NABEEL AKHTAR

Boston University, Graduate School of Arts and Sciences, 2019

Major Professor: Abraham Matta, Professor of Computer Science

ABSTRACT

Next-generation networks are expected to provide higher data rates and ultra-low la-

tency in support of demanding applications, such as virtual and augmented reality, robots

and drones, etc. To meet these stringent requirements of applications, edge computing

constitutes a central piece of the solution architecture wherein functional components of

an application can be deployed over the edge network to reduce bandwidth demand over

the core network while providing ultra-low latency communication to users. In this thesis,

we provide solutions to resource orchestration and management for applications over a

virtualized client-edge-server infrastructure.

We first investigate the problem of optimal placement of pipelines of application func-

tions (virtual service chains) and the steering of traffic through them, over a multi-technology

edge network model consisting of both wired and wireless millimeter-wave (mmWave)

links. This problem is NP-hard. We provide a comprehensive “microscopic” binary in-

teger program to model the system, along with a heuristic that is one order of magnitude

faster than optimally solving the problem. Extensive evaluations demonstrate the benefits

of orchestrating virtual service chains (by distributing them over the edge network) com-

pared to a baseline “middlebox” approach in terms of overall admissible virtual capacity.

v

Next, we look at the problem of finding the optimal configuration parameters, such as

memory and CPU, for application functions running as serverless functions, i.e. they run

in stateless compute containers that are event-driven, ephemeral, and fully managed by the

cloud provider. While serverless computing is a relatively simpler computing model, con-

figuring such parameters correctly while minimizing cost and meeting delay constraints

is not trivial. To solve this problem, we present a framework that uses Bayesian Opti-

mization to find the optimal configuration for serverless functions. The framework uses

statistical learning techniques to intelligently collect samples with the goal of predicting

the cost and execution time of a serverless function across unseen configuration values.

Our framework uses the predicted cost and execution time to select the “best” configu-

ration parameters for running a single or a chain of serverless functions (service chains).

Evaluations on a commercial cloud provider and a wide range of simulated distributed

cloud environments confirm the efficacy of our approach.

vi

Contents

1 Introduction 1

1.1 Background and Motivation . 3

1.2 Challenges . 8

1.2.1 Virtual Function Placement and Traffic Steering 8

1.2.2 Configuring the Parameters of Virtual Functions 9

1.3 Thesis Contributions . 11

1.4 Roadmap of thesis . 12

2 Related Work 13

2.1 Virtual Function Placement and Traffic Steering 13

2.2 Configuring Virtual Functions . 15

3 Virtual Function Placement and Traffic Steering 18

3.1 Introduction . 18

3.2 Background and Related Work . 21

3.2.1 Placement . 23

3.2.2 Traffic Steering . 24

3.3 System Model . 25

3.4 Mathematical Model . 28

3.4.1 Variables . 29

3.4.2 BIP Formulation . 30

vii

3.5 Evaluation Model, Parameters and Proposed Heuristic 35

3.5.1 Edge Network Graphs . 35

3.5.2 Input Flow Parameters . 42

3.5.3 Proposed Heuristic . 43

3.6 Evaluation Results . 46

3.7 Summary . 56

4 Configuring Serverless Functions using Statistical Learning 57

4.1 Introduction . 57

4.2 System Description . 61

4.3 COSE: The Performance Modeler component 63

4.3.1 Our Approach: Leveraging Bayesian Optimization 65

4.3.2 Adapting BO for Serverless Functions 70

4.4 COSE: The Config Finder Component 72

4.5 Experimental Results: Running COSE on Amazon Lambda 75

4.5.1 Representative Functions . 75

4.5.2 Evaluation Results . 76

4.6 Evaluation in a Distributed Cloud Environment 78

4.6.1 Modeling Cloud Provider . 78

4.6.2 Modeling cost and execution time 79

4.6.3 Simulation Results . 81

4.7 Related Work . 87

4.8 Summary . 88

5 Conclusion and Research Directions 89

5.1 Summary of Contributions . 89

viii

5.2 Open Research Directions . 90

Bibliography 91

Curriculum Vitae of Nabeel Akhtar 98

ix

List of Tables

1.1 Comparison of Virtualization Services 7

3.1 Network Parameters. 29

3.2 Traffic Parameters. 30

3.3 Variables. 31

3.4 Graph Parameters and Characteristics 39

3.5 Evaluation Parameters . 40

3.6 Flow Parameters . 44

4.1 Serverless platforms . 58

x

List of Figures

1.1 Virtual Reality under the traditional client-server model 4

1.2 Virtual Reality application hosted on edge-cloud 4

3.1 Function virtualization for 5G mobile network 19

3.2 Virtual Reality use case . 27

3.3 Augmented Reality use case . 27

3.4 Santa Monica network topology . 36

3.5 Palo Alto network topology . 37

3.6 Multi-technology edge network consisting of processing and routing nodes. 38

3.7 Probability of successful bit delivery over a mmWave link 40

3.8 Cost vs running time comparison of BIP vs Heuristic 47

3.9 Flow Acceptance Ratio for Wire, Single and Dual networks with BIP and

Heuristic . 48

3.10 Virtual Capacity Allocated for Wire, Single and Dual networks with BIP

and Heuristic . 49

3.11 Average Link Utilization for all links as a function of incoming flows for

Wire, Single and Dual networks . 50

3.12 Average Link Utilization for Wire links as a function of incoming flows

for Wire, Single and Dual networks . 51

3.13 Average Link Utilization for mmWave links as a function of incoming

flows for Single and Dual networks . 52

xi

3.14 CDF of mmWave link utilization for Single networks 53

3.15 Flow Acceptance Ratio under middlebox schenario for Wire, Single and

Dual networks . 54

3.16 Virtual Capacity Allocated under middlebox schenario for Wire, Single

and Dual networks . 55

4.1 Serverless function’s performance with different memory sizes and co-

location . 59

4.2 System overview . 62

4.3 Example of AIAD getting stuck at a local minimum 64

4.4 Bayesian Optimization example . 67

4.5 COSE performance on Amazon Lambda for I/O Intensive serverless function 76

4.6 BO’s Convergence and EI . 82

4.7 Configuration with COSE . 83

4.8 COSE for serverless function with changing execution model 83

4.9 Delay bounded chaining of serverless functions 85

xii

List of Abbreviations

5G Fifth Generation

AIAD Additive Increase Additive Decrease

AR Augmented Reality

AWS Amazon Web Services

BIP Binary Integer Program

BO Bayesian Optimization

CDF Cumulative Distribution Function

COdc Central Offices Data Centers

COs Central Offices

COSE Configuring Serverless Framework

CP Cloud Provider

CPU Central Processing Unit

EC Elliptical Curve

EC2 Amazon Elastic Compute Cloud

EI Expected Improvement

eNodeB Evolved Node B

EPC Evolved Packet Core

FaaS Function as a Service

GP Gaussian Process

xiii

GPU Graphics Processing Unit

HDM Head Mounted Device

HDR High Dynamic Range

HTTP Hyper Text Transfer Protocol

ILP Integer Linear Program

ITU-R International Telecommunication Union’s

Radio-communication Sector

L2/L3 Layer 2/Layer 3

LOS Line of Sight

mmWave Millimeter Wave

MPI Maximum Probability of Improvement

NFV Network Function Virtualization

NP Non-deterministic Polynomial

OPEX Operating Expense

P-GW Packet Data-network Gateway

PN Processing Nodes

QoS Quality of Service

RAN Radio Access Network

RN Routing Nodes

S-GW Serving Gateway

SDN Software Defined Networking

SFC Service Function Chaining

UCB Upper Confidence Bound

UE User Equipment

VM Virtual Machine

xiv

VNE Virtual Network Embedding

VR Virtual Reality

VF Virtual Function

xv

Chapter 1

Introduction

Next-generation networks are expected to go beyond the delivery of static content or

streaming content, such as telephony, web browsing, and low-resolution video. They are

envisioned to support billions of devices, adapt to sudden and frequent changes in demand,

and seamlessly process user information at much higher data rates (exceeding 500 Mbps)

and ultra-low latencies (less than 5 milliseconds) [25, 47, 67].

Potential next-generation applications, such as augmented/virtual reality, robots and

drone control, healthcare, etc., have stringent network delay and bandwidth requirements.

Currently, application servers are supported on public cloud and users experience network

delay in the range of 20-100 milliseconds [67]. With such high network delays, the cur-

rent client-server model cannot support next-generation applications given their stringent

requirements. To decrease network latencies and increase data rates, we need to change

both the network design, and the application design, and we need to use available virtual

resources efficiently. We envision that the following changes need to be made to decrease

latencies and increase data rates.

- Use a client-edge-core model, instead of the traditional client-server model. In the

client-edge-core model, the clients experience higher speed and very low network de-

lays over the edge network where applications can run. The edge network, closer to

end-users, has 1-5ms of network delays and can provide speeds of 500 Mbps or higher.

1

2

The edge network can be a multi-technology network (e.g., using mmWave links along

with wired links to support low latency and high bandwidth requirements [23]). Fur-

thermore, instead of using bare-metal machines, virtualization technologies can be in-

troduced at the edge of the network. Virtualization means that the applications are not

tied to a specific piece of physical hardware and multiple application workloads can run

simultaneously on the same piece of hardware. The edge network should be able to sup-

port different virtualization services, such as Virtual Machines (VMs) [28], Containers

[34], and Serverless [27, 38]. The flexibility in choosing different virtualization services

enables edge resources to be effectively used depending on the burstiness of the appli-

cation’s computations, i.e., the ratio of computation time to the total running time of the

application. In particular, VMs are appropriate for supporting long-term computations

where a user is responsible for installing all systems and application programs given a

certain amount of resources (e.g., memory and CPU) allocated to the VM. On the other

hand, a Serverless computing model is typically more appropriate for short-term com-

putations where a user configures resource parameters to run application programs, and

it’s up to the cloud provider to provide the necessary underlying execution infrastructure

that may take the form of either VMs or Containers.

- Change the way the applications are designed to support the client-edge-core model of

the network, where low-latency components are hosted on the edge of the network and

other components are hosted on the network core. Applications should have a modular

design, where different application modules can run as Virtual Functions (VFs) either at

the edge or the core of the network. This modular application design inherently avoids

vendor lock-in. Depending on the functionality of a VF and application requirements, a

VF can either run on a Virtual Machine, Container, or as a Serverless Function.

- Intelligently configure multiple system parameters, such as memory, CPU, location,

3

etc., for running VFs on cloud providers. Configuring such parameters correctly can sig-

nificantly decrease the cost while meeting the performance criteria. However, choosing

the “best” parameters for minimizing cost and meeting delay constraints is not trivial.

These aforementioned changes come with their own set of unique challenges. The first

challenge includes finding efficient ways to decompose applications into VFs, which is

inherently dependent not only on finding the appropriate virtualization service to use for

each application VF, but also on the way these VFs are chained together to perform a cer-

tain task. The second challenge involves the placement of the decomposed VFs along the

client-edge-core model, together with resource management to strictly adhere to the strin-

gent application quality-of-service (QoS) requirements. While typical static placement al-

gorithms areNP-hard, any suggested placement or resource management technique needs

to quickly scale resources and adapt to frequent and sudden changes in demand. Finally,

all the aforementioned challenges need to be resolved while taking into consideration the

cost incurred for using cloud and edge resources. Choosing the “best” configuration (CPU,

RAM, location, etc.) for running virtual resources on a cloud provider should not only at-

tempt to minimize cost but also meet the performance needs of the application.

1.1 Background and Motivation

Redesigning The Applications:

Next-generation applications, such as Augmented and Virtual reality (AR and VR), are

envisioned to have strict network requirements. Qualcomm and AT&T [25, 67], two of

the leading network operators, have termed AR/VR as the “killer applications” that will

change the way the network is currently designed. First, AR and VR videos include new

formats, such as stereoscopic, high dynamic range (HDR) [29], and 360◦, at increased res-

olutions (more than 8K) and frame rates (higher than 90 fps). This drastically increases the

4

Internet

ServersVR Client Computer

User Premise Datacenter

Figure 1.1: Virtual Reality under the traditional client-server model

Internet

ServersVR

User Premise DatacenterEdge
Network

Figure 1.2: Virtual Reality application hosted on edge-cloud

bandwidth requirement of the network to more than 500 Mbps. Second, AR/VR content is

highly interactive. For traditional non-interactive content that can use buffering, network

latency is generally not an issue. However, with interactive content, low latency is required

to ensure responsiveness. Consider, for example, an online gaming application using VR

and AR where the user has a head mounted device (HMD), the latency between an action

(head movement) and reaction (the display getting updated) is crucial. For such scenarios,

network latency of less than 5ms is expected.

To support such data-intensive, latency-sensitive applications, there is a need to re-

design both the application architecture and the supporting network and computing infras-

tructure. Under the current client-server model, content is hosted in servers running mostly

in datacenters. The network delays experienced by a typical networked application range

from 20-100 milliseconds. This is largely due to the propagation and transmission de-

lays over the wide-area Internet. By hosting the application at the network edge, network

delays could be decreased.

The value proposition is promising since it enables us to host next generation, edge-

5

driven applications, and thus meet their stringent delay and bandwidth requirements. Host-

ing an application at the edge of the network comes with a set of challenges [79]. Fig-

ure 1.1 shows a VR application as currently used under the client-server model. The VR

set needs to be connected to a local computer that runs most of the computations for the

VR set and transfers data from/to the VR set. The computer also needs to be connected to

the central servers running in a datacenter with a good Internet connection. Such client-

server model may only support simple interactive VR applications. More complex VR

applications would typically experience computation and/or network bottlenecks. Cam-

pus, home, and enterprise networks today simply cannot support the high bandwidth and

low latency required by the envisioned highly interactive VR applications.

Figure 1.2 shows a recent trend in support of edge-driven applications. Edge resources

are connected with application servers with good Internet connections, and intensive com-

pute tasks are run at the network edge. One recent example is Parsec Gaming [64], where

users rent machines on the network edge, e.g., to play online multi-player games. Since

compute intensive tasks run at the network edge, the user premise computer can be a sim-

ple machine, e.g., a Raspberry Pi. By moving the computation to the network edge, Parsec

enables people to play compute intensive games on simple machines while providing lower

network delays. Similarly, Google has recently launched Google’s Stadia [9], which uses

edge computing nodes that can handle part of the workload much closer to the end-user

than Google’s data centers.

While edge resources help lower network latency, they are scarce, and utilizing them is

costly. To efficiently use edge resources, and to fulfill application requirements, we believe

that applications can be divided into modules that can run as virtual functions, either in

parallel or chained in a sequence, to provide a required service. The advantage of dividing

the application into smaller modules leads to a gain in flexibility on where we could run

6

them; some options include running a module locally, on a server located at the edge, or

even across multiple edge-cloud providers. Although dividing the applications into smaller

modules has software engineering challenges, such flexibility enables the infrastructure

to run optimizations specifically for a single module (set) – for example, using GPU to

perform encoding/transcoding of video, for in-network anomaly detection processing, or

for Elliptical Curve (EC) cryptography operations. The majority of the tasks, e.g., 3D

construction of gaming scenes, currently done on the servers in the core datacenter, could

be performed at the edge of the network, thus significantly reducing user perceived and

network latencies. The state of the game still needs to be shared with a central server

running in the core datacenter. However, we believe that this information is more delay

tolerant as it does not directly impact the user experience. These modules are independent

of each other and they can run on a single or multiple machines at the edge. Note that the

same application module (or VF) is capable of supporting multiple application flows, i.e.,

a single VF instance can serve multiple clients at the same time.

Redesigning The Edge Infrastructure:

To support next-generation applications that run on the network edge and core, and to sup-

port modular application design, there is a need for change in the network infrastructure.

Currently, datacenters are typically geographically far from the end-users, which leads to

lower bandwidth and high network latencies. Edge computing aims to lower the delays.

However, it is important that the edge network is designed taking into account different

types of user applications running as virtual functions. Application flows originating from

a user equipment (UE) are served by the application virtual functions that are running at

the network edge, and by the application server running at the core (datacenter). To pro-

vide better connectivity, the network edge can consist of heterogeneous technologies, e.g.,

using millimeter-Wave (mmWave) links along with wired links, to increase the overall

7

capacity of the edge network and to lower network delays. Recently, Facebook’s Connec-

tivity Lab tested up to 20 Gbps links over 13 km with mmWave technology in Southern

California [54], and Facebook’s Terragraph project [35] is developing a multi-node gigabit

wireless edge network for dense urban areas.

The edge network should also be able to support different virtualization services. Cur-

rently, most edge networks are assumed to support Virtual Machines only. Given recent ad-

vancements in edge infrastructure technologies and devices (e.g., AWS Greengrass which

includes support for AWS Lambda [41]), and continual evolution of applications, it is be-

coming apparent that the future edge network will support heterogeneous virtualization

services, e.g., Virtual Machines (VMs), Containers, and Serverless computing platforms.

By having the flexibility of choosing among different virtualization services, the placement

of application virtual functions can better adapt to the needs of the application. Table 1.1

shows a comparison of different virtualization services offered by current cloud providers.

Provisioning time refers to the time to start a VF, utilization measures the usage of re-

sources, charging granularity refers to the minimum amount of execution time charged,

and cost per unit time is the price that the user pays for the VF per unit time.

Table 1.1: Comparison of Virtualization Services

Technology
Provisioning

Utilization
Charging Cost per

time Granularity unit time

Virtual Machine seconds to minutes low minutes to hours low
Container seconds high minutes high
Serverless milliseconds highest milliseconds highest

VMs are cheapest in terms of cost per unit of time and allow for full control of the

virtual resources. Their utilization is typically low, they have a high provisioning time

(a few minutes), and the charging granularity is minutes to hours. Furthermore, VMs

are less flexible, and harder to manage and scale. Serverless has the highest cost per

8

unit of time and the least control of virtual resources. They inherently support stateless

execution of functions, but provide out-of-the-box scalability. Their provisioning time and

charging granularity is milliseconds, so users only pay when the serverless function runs,

which leads to higher utilization of cloud resources. Serverless is more suitable for bursty

computations [27], where the user runs small computations intermittently. In this case,

the total cost is low. If the VF is constantly being used, serverless can be significantly

more expensive as compared to VMs and Containers. Serverless has limitations [56] on

the amount of memory allocated to the function (e.g., maximum of 3GB on AWS Lambda)

and its execution time (e.g., maximum of 300 seconds on AWS Lambda). Furthermore,

users have no control over the environment, i.e., one cannot custom install packages and

software on the running environment.

1.2 Challenges

1.2.1 Virtual Function Placement and Traffic Steering

Placement of application service graphs, consisting of virtual functions (VFs), across mul-

tiple nodes, and possibly across multiple cloud providers, over the edge-cloud, and steering

traffic through the virtual functions, is a hard problem to solve. A set of VFs may need to

be chained together to provide a certain service and this chain needs to be placed on the

virtualized infrastructure. Note that multiple instances of the same VF may be deployed

in the network, and each VF instance can support multiple users.

VF Placement: The task of creating and deploying virtual service chains, annotated with

their resource requirements, is similar to the Virtual Network Embedding (VNE) and Net-

work Function Virtualization (NFV) placement problem [37, 68, 42, 61]. However, appli-

cation function virtualization brings a unique set of challenges. The application functions

can be placed on different types of virtualization technologies, e.g., placing a VF doing

9

video encoding on GPUs. The characteristics of the functions can also be very diverse, so

a function with “bursty” computation may be best placed on a serverless platform, while a

function running for longer times may be best placed on a VM. Depending on the location

of customers, multiple sets of the same service chain might be placed on the network. For

reliability, replicating VF chains and placing them strategically over the network is also

needed. Similar to VNE, the placement of application (virtual) service graphs isNP-hard.

Formulated as an optimization problem, VF placement and chaining reduces to an integer

program, which is NP-hard and intractable for larger inputs.

VF Traffic Steering: Traffic steering through VFs residing at different locations is chal-

lenging. Software-Defined Networking (SDN) offers a flexible control approach to install

traffic forwarding rules. However, SDN capabilities have been limited to L2/L3 forwarding

functions and cannot support application VFs. SDN based solutions have been proposed

[36, 66, 85] that extend the current L2/L3 functions of SDN to provide a policy enforce-

ment layer for VF traffic steering. Although extended SDN mechanisms have enabled VF

traffic steering, finding the best path through a set of VFs under multiple constraints, such

as delay and throughput, is NP-complete [65].

1.2.2 Configuring the Parameters of Virtual Functions

Configuring appropriate resources to either VMs/Containers or Serverless functions is es-

sential to the cost and performance of running application programs. As noted earlier,

VMs/Containers support computations over a longer time scale. Once the resources are

reserved for VMs/Containers, the users typically install their systems and application pro-

grams, and the resources are usually kept anywhere from a few hours to multiple days.

Because of the longer timescales for managing VMs/Containers’ resources, the config-

uration parameters for resources are either tuned offline [24], or they are re-configured

10

using monitoring services [12]. Although the serverless platform is built on top of VMs or

Containers, serverless application functions require little/no setup time, and they typically

finish execution in a few milliseconds. Typically, a serverless function is periodically trig-

gered when certain events happen. Serverless functions are an ideal candidate for adaptive

online resource configuration since savings resulting from a proper cloud configuration are

most significant for recurring jobs [22].

In this thesis, we focus on configuring the parameters of serverless functions. These

application Virtual Functions run as independent modules on cloud providers. These VFs

have a wide variety of use cases, with different types of evolving techniques used for

data processing, such as Deep Learning, Encoding/Transcoding, and 3D reconstruction.

Hence, these functions have diverse behaviors and resource requirements (memory, CPU,

GPU, disk). To run these VFs on a cloud provider, a user needs to select different types

of resources such as VMs, Containers, or Serverless Functions. Moreover, the users need

to select the resource configurations – the number of CPU cores, amount of memory, disk

space – for each type of resource, which is not trivial. To meet the service quality and

to minimize the cost paid to a cloud provider, choosing the right configuration for each

VF is essential. However, selecting the best cloud configuration parameters is difficult

due to different types of execution models, co-location of VFs on resources by the cloud

provider, various input workloads, and diverse choice of configuration parameters. Exist-

ing solutions either do not fully address all the aforementioned challenges, or they assume

complete knowledge of the underlying cloud infrastructure. Since this information is not

available to the user, these techniques cannot be applied by the user for configuring re-

sources on the cloud provider.

11

1.3 Thesis Contributions

The contributions of this thesis center around the resource allocation and resource config-

uration for application Virtual Functions. The contributions are as follows.

• Edge computing constitutes a central piece of the solution architecture wherein func-

tional components of an application can be deployed over the edge network so as to

reduce bandwidth demand over the core network while providing ultra-low latency

communication to users. We investigate the joint optimal placement of virtual service

chains consisting of virtual application functions (components) and the steering of traf-

fic through them, over a multi-technology edge network model consisting of both wired

and wireless mmWave links. This problem is NP-hard. We provide a comprehensive

“microscopic” binary integer program to model the system, along with a heuristic that

is one order of magnitude faster than solving the corresponding binary integer program.

Extensive evaluations demonstrate the benefits of managing virtual service chains (by

distributing them over the edge network) compared to a baseline “middlebox” approach

in terms of overall admissible virtual capacity. We observe significant gains when de-

ploying mmWave links that complement the wired physical infrastructure.

• We present COSE, a framework that uses Bayesian Optimization to find the optimal

configuration for serverless functions. Running application Virtual Functions (VFs) re-

quires users to configure multiple parameters, such as memory, CPU, cloud provider,

etc. While serverless is a relatively simpler computing model, configuring such pa-

rameters correctly while minimizing cost and meeting delay constraints is not trivial.

To solve this problem, COSE uses statistical learning techniques to intelligently collect

samples with the goal of predicting the cost and execution time of a serverless function

across unseen configuration values. Our framework uses the predicted cost and execu-

12

tion time, to select the “best” configuration parameters for running a single or a chain

of serverless functions (service chains), while satisfying customer objectives such as

minimizing cost or satisfying delay constraints.

1.4 Roadmap of thesis

The rest of the thesis is organized as follows. In Chapter 2, we discuss work related to this

thesis. In Chapter 3, we give the details of the application virtual function placement and

routing problem, and present simulation results for both synthetic and real edge network

topologies. In Chapter 4, we present COSE, an adaptive learning framework for finding the

“best” configuration parameters for serverless functions. Chapter 5 concludes this thesis

with future work.

Chapter 2

Related Work

2.1 Virtual Function Placement and Traffic Steering

Placement of functions deals with the efficient instantiation of VF instances on process-

ing nodes to satisfy the demands of the system while minimizing the overall cost. Since

different application flows can have different service chain requirements, a virtual ser-

vice graph, with resource requirements, is created for each flow. The task of allocating

resources for virtual service chains is similar to the Virtual Network Embedding (VNE)

problem [37, 68].

In the VNE problem, a virtual network is embedded in a substrate network. The op-

timal resource allocation leads to customized end-to-end guaranteed service to the end-

users. The VNE problem can be divided into two sub-problems. In Virtual Node Map-

ping, the virtual nodes are mapped on physical nodes, and in Virtual Link Mapping, the

virtual links are mapped on physical links and connect virtual nodes. Solving the VNE

problem is NP-hard. Even with a given virtual node mapping, the problem of optimally

mapping the virtual links onto the physical network links reduces to the unsplittable flow

problem [53], which is also NP-hard. Proposed solutions for solving the VNE problem

can be divided into two types. The One Stage VNE problem solves both the Virtual Node

Mapping and Virtual Link Mapping jointly [48, 57, 75]. In the Two Stage VNE problem,

the Virtual Node Mapping is done at the initial stage, and then the Virtual Link Mapping is

13

14

performed at the second stage [31]. There is strong coordination between both stages, and

the process is repeated until the desired mapping is achieved [84]. Since the VNE problem

isNP-hard, the time required to find an optimal solution for large problem sizes becomes

intractable. Taking the complexity of VNE into account, there are two approaches to solve

VNE. Exact solutions propose optimal techniques to solve small instances of the prob-

lem and to create a baseline case for testing Heuristic solutions. Exact solutions can be

achieved by formulating the problem as an Integer Linear Program (ILP) and using algo-

rithms, such as branch and bound, branch and cut, and branch and price [83], to optimally

solve small instances of the problem in a reasonable time. Heuristic solutions attempt

to find a reasonable solution, compromising optimality for faster execution time for the

mapping.

In our work, we look at the virtual function placement and traffic steering for applica-

tion virtual functions. Unlike the VNE problem, where a static network is embedded onto

a substrate network, we embed Virtual Function service chains (graphs) onto the edge

network. The embedding is done in an online fashion, where for each flow, we embed

a VF service chain onto the substrate network. Based on the demand of the flow, there

can be multiple instances of a virtual function on the edge network. Moreover, unlike the

VNE problem, VF graphs have a directional flow, and the flow must pass through VFs

in a predefined order. Based on the computation performed by the VFs, the bandwidth

demand for flows changes as they traverse through the VF chain. In this thesis, we provide

a One Stage solution to the optimal placement of virtual service chains and traffic steering

through them, over a multi-technology edge network model consisting of both wired and

wireless links. The Exact solution is provided by formulating the problem as an ILP. To

solve the problem faster, we propose a Heuristic solution that is an order of magnitude

faster than the Exact solution and gives results closer to the optimal solution.

15

2.2 Configuring Virtual Functions

Our work focuses on resource configuration for Serverless Functions. Although Serverless

Functions have a simpler execution model, they are an ideal candidate for resource config-

uration since savings resulting from a proper cloud configuration are most significant for

recurring jobs [22].

Serverless Measurement & Monitoring: As serverless computing is gaining popular-

ity, a significant amount of research is focusing on measuring and monitoring different

aspects of the serverless paradigms [13, 14]. Previous works [80, 59, 58, 49] perform a

detailed study of different commercial serverless platforms and characterize their archi-

tecture, performance, and resource management strategies. [44] describes the important

aspects of serverless platforms and addresses the challenges in designing these systems.

[39] and [27] suggest extending the serverless paradigm to the edge of the network for IoT

and Edge devices. Moreover, there have been several commercial products like dashbird

[16], SignalFx [17], and Thundra [18] that help developers monitor their serverless appli-

cations in real-time. Unlike previous works which focus on monitoring and understanding

the behavior of serverless functions and cloud provider serverless platforms, our work fo-

cuses on finding the “best” configuration parameters for a serverless function or a chain of

serverless functions, regardless of the underlying details and complexities of the serverless

platform used for running these functions.

Cloud Provider Resource Configuration: Commercial cloud providers have developed

systems that suggest suitable configuration parameters for running tasks on the cloud

provider’s infrastructure. Google provides machine type recommendation system [15] that

helps to maximize the resource utilization of user VM instances. The recommendations

are based on the system metrics gathered by Google’s monitoring system for the previous

eight days. AWS provides auto-scaling service [12] to the users for EC2 instances. It

16

automatically adds/removes EC2 instances based on user-specified conditions for the load

on the instances.

The cluster managing systems are provided by cloud providers where the user spec-

ifies the needs for the application, and cloud providers suggest the cluster configuration.

Google’s Borg [78] is a large-scale cluster manager, and schedules applications on large

Google clusters. Brog offers the users a declarative job specification language and real-

time job monitoring tools. Mesos [46] offers cluster resources to computing frameworks,

such as Hadoop and MPI. It provides near-optimal data locality when sharing a cluster

among diverse frameworks. Paragon [32] and Quasar [33] are online schedulers that use

historical data of previously deployed applications to decide the cluster share for a new

application.

Currently, cloud providers do not provide a resource configuration facility for server-

less computing. Moreover, the aforementioned technique assumes that the user has com-

plete knowledge of the underlying cloud infrastructure. Since the cloud providers don’t

share this information with the users, a user cannot apply these techniques for serverless

computing.

Service Provider Resource Configuration: In these systems, a user infers the perfor-

mance/cost of using given resources and picks the cloud provider configurations in the

hope of minimizing the cost. CherryPick [24] uses Bayesian Optimization to predict suit-

able VM configuration for an application running on a cloud provider. CloudCmp [55]

recommends a suitable cloud provider for running user application. It looks at the elas-

tic computing, persistent storage, and networking services offered by cloud providers in

choosing a suitable cloud provider. Both CherryPick and CloudCmp are offline tools that

help users configure resources before the users deploy their applications. Ernest [76] builds

the performance model of machine learning applications by running it on small data-sets.

17

It uses a statistical sampling technique to collect a small number of training data to build

the model. Using this performance model it predicts the application behavior for large

data-sets across different resources. WebPerf [50] estimates the latency model of an ap-

plication running on a cloud provider using the causal dependencies of the application

and the latency models of cloud APIs under hypothetical configurations. Elastisizer [45]

suggests a suitable cluster size for big-data applications using job profiling, simulations,

and estimation using black-box/white-box techniques. ARIA [77] builds the job profile

and performance model for MapReduce and Hadoop applications. It uses the performance

model to suggest resource configurations that satisfy delay constraints on the execution

time for MapReduce jobs.

Unlike the vast body of prior work, which focus on VMs, Containers, or cluster con-

figurations, our COSE framework targets serverless workloads. COSE works in scenarios

where the users have limited to no visibility over the factors that affect the performance

of the serverless function. Moreover, COSE runs online and adapts to the changes in the

execution model of an application running as serverless.

Chapter 3

Virtual Function Placement and Traffic Steering

3.1 Introduction

Next-generation mobile networks are expected to go beyond the delivery of static or

streaming content, such as telephony, web browsing, and low-resolution video. They

should be capable of serving many billions of users and smart devices at much higher data

rates (over 500 Mbps) and ultra-low latencies (less than five milliseconds) [25, 67, 47].

Potential 5G applications include robots and drones, virtual and augmented reality, health-

care, etc. Traditional network and application architectures can not support these strin-

gent application requirements. Advances in the physical network infrastructure, e.g.,

the integration of Gigabit Ethernet and millimeter wave (mmWave) technologies, and the

virtualization of network and application functions are key to achieving these 5G goals

[25, 67, 47].

The virtualization of network functions, termed Network Function Virtualization (NFV),

aims to decouple network software from proprietary, dedicated hardware appliances, termed

“middleboxes” (e.g., traffic shapers, Network Address Translation boxes). Similarly, appli-

cation virtualization allows an application to work in an isolated virtualized environment.

Moreover, in cloud-based or service-oriented application architectures, an application can

be composed of many application components, where each component can run as a Vir-

tual Function (VF). Thus, under application service virtualization, multiple VFs can run

18

19

Internet

Edge Network:
Compute, storage and network resources

eNodeB S-GW P-GW

UE

Application data
App server

Subscribe data flow

Base
 station

Embedding

Physical link
Logical link

Application Services at the edge

Application Data

EPC

VF
Authentication

VF
Caching

VF
Processing

IP
services

HSS

P1

R4
P2

P3R1

R3

R2

b) Edge network with processing & routing nodes
 and heterogeneous transport network

a) 5G Infrastructure supporting virtualized services

Wired links
mmWave links

Edge Network

Base
 stations

Base
 stations

Virtualization Layer

Figure 3.1: Function virtualization for 5G mobile network

on any general-purpose computer within a virtual machine, in an operating system con-

tainer, or as a serverless “Function as a Service” (FaaS). The flexibility with which VFs can

be deployed and managed — i.e., chained, allocated resources, migrated — allows their

hosting “close” to the users, in an edge cloud/datacenter, thus meeting the 5G application

requirements of ultra-low latency and high throughput.

Figure 3.1a illustrates the evolution of cellular networks to 5G, where network ser-

vices are moved from radio base stations and gateways into the edge cloud. In a traditional

LTE architecture, user traffic traverses a series of devices on its way to the application

server: the base station (eNodeB), a serving gateway (S-GW), and finally a packet data

network gateway (P-GW) that connects to the outside world. On the other hand, in a vir-

tualized environment, these network functions are envisioned to run virtualized, anywhere

on the edge resources. They are chained together in a particular order based on processing

requirements — in Figure 3.1a example, (eNode, S-GW, P-GW). To steer traffic across

these VFs, Software Defined Networking (SDN) mechanisms are leveraged so that routes

are established programmatically between components of the service chain.

20

Applications running on the edge network can also have different service chain require-

ments (e.g., Authentication, Processing, Caching in Figure 3.1), and multiple application

flows may need to use the same VF. Thus, understanding where to place VFs, or instances

of the same VF, that are necessary to satisfy service chain requirements of different appli-

cation flows, subject to physical resource (host and network) constraints, is a challenging

problem. Furthermore, a 5G edge network may consist of multiple link technologies, e.g.,

Ethernet and mmWave, that may have different characteristics suitable for possibly differ-

ent types of application flows.

Our Contribution: In this chapter, leveraging optimization theory, we investigate the

joint placement of virtual service chains consisting of virtual application functions (com-

ponents) and the steering of traffic through them, over a multi-technology edge network

model consisting of both wired and mmWave links. Our contributions are:

• We propose a detailed “microscopic” binary integer program (BIP) to find the optimal

placement of virtual functions.

• BIP is NP-hard (i.e., computationally expensive), so we provide a heuristic that is one

order of magnitude faster than BIP.

• Our workload model captures virtual service chains that correspond to the needs of future

applications described as “killer applications” (i.e., virtual and augmented reality) over

the edge network.

• Extensive evaluation results demonstrate the benefits of managing virtual service chains

(by distributing them over the edge network) compared to a baseline “middlebox” ap-

proach (where all functions are run on one host).

• We observe significant gains when deploying mmWave links that complement the wired

physical infrastructure. Moreover, most of the gains are attributed to only 30% of these

21

mmWave links, which indicates that judicial placement of mmWave links is key for max-

imum gains.

• We show that the gains are highest in the high node density networks, where mmWave

links can be easily established between the nodes.

• To the best of our knowledge, this is the first work to study a multi-technology based

edge infrastructure envisioned for 5G networks. The developed model can be used by

a 5G “service” provider to allocate resources to service chains optimally, and by a 5G

“infrastructure” provider to understand the benefits of deploying mmWave links.

Chapter Organization: The chapter is organized as follows: Section 3.2 provides a back-

ground and reviews related work. Section 3.3 describes our system model. Section 3.4

explains our mathematical formulation. Section 3.5 presents our evaluation model, pa-

rameters and proposed heuristic. Results are shown in Section 3.6. Section 3.7 concludes

the chapter.

3.2 Background and Related Work

This section provides a review of some of the most prominent research work on func-

tion placement and traffic steering, and the industry’s direction to support high data rate

and ultra-low latency applications on next-generation mobile networks (5G and beyond).

According to “IMT-2020”, a program developed by the International Telecommunication

Union’s Radiocommunication Sector (ITU-R) for 5G, the peak data rates are expected to

be around 10 Gbits/s, while end-to-end latency is expected to be less than 5 ms [11]. To

meet these strict requirements, there is a need for changes in the infrastructure (e.g., us-

ing millimeter wave) and for having elasticity in hosting VFs at the edge of the network.

Users accessing application servers hosted in the public network experience average de-

22

lays of 50-100ms, while such applications hosted in the operator’s cloud experience delays

ranging from 20-50ms. However, these delays are still significantly higher than those ex-

pected from a network that supports future applications. To meet the strict requirements

of 5G network applications for delays of 1-5 ms, the edge computing paradigm that places

computation closer to end-users is necessary [25, 67]. As an example, Telefonica, one

of the world’s largest telecom operator, is using their central offices (COs) as datacenters

(COdc). These COdc are closer to the end-users (at the network edge) and are capable of

hosting user VFs [62].

Figure 3.1a shows the case where service-chain components are running as virtual-

ized functions at the edge of the network. Here, all the traffic from users passes through

Authentication, Processing, and Caching, which are running at the edge of the network,

before arriving at the Application Server. Note that the operator’s network services (e.g.,

S-GW and P-GW), which are part of the Evolved Packet Core (EPC), can also be virtual-

ized and hosted in the edge datacenter, as shown in Figure 3.1a. However, in this work,

we are specifically studying virtual functions for applications running on the 5G network.

The internal functional split of the 5G RAN, and virtual EPCs is beyond the scope of this

work.

Figure 3.1b shows an example of an edge network, consisting of processing nodes (P1-

P3) and routing/switching nodes (R1-R4). This edge network covers a small geographical

area, e.g., a medium-size city. As the name suggests, processing nodes have the processing

power and can host VFs, while routing nodes are responsible for routing traffic through

the network. Note that a processing node can also act as a routing node. All the nodes are

SDN enabled and can be programmed for traffic routing. The nodes are connected with

two different link technologies, namely Wire and millimeter wave (mmWave) links. The

mmWave technology is considered an important aspect of 5G networks. The enormous

23

amount of spectrum available in the mmWave band, and the ease and flexibility of deploy-

ing mmWave infrastructure, will greatly increase the network capacity, as well as decrease

latency when mmWave links are used to create shortcuts between nodes [63].

Application service components are hosted at processing nodes. These components run

as VFs and are dynamically instantiated, migrated, or removed from the network based on

the system requirements. Applications have strict requirements for their traffic to traverse

virtualized services in a certain order, e.g., authentication followed by caching. This is

known as “Service Function Chaining” (SFC). SFC is an important capability of virtual-

ized networks as it provides both modularity and elasticity. A single function in a service

chain is dynamically changed/updated without having any impact on other functions. The

efficient placement of virtualized functions and traffic steering through service chains are

challenging problems.

3.2.1 Placement

Placement of functions deals with the efficient instantiation of virtual function (VF) in-

stances on processing nodes to satisfy the demands of the system while minimizing the

overall cost. Since different application flows can have different service chain require-

ments, a virtual service graph, with resource requirements, is created for each flow. This

graph is embedded on a virtualized physical infrastructure, as shown in Figure 3.1a. The

task of creating and deploying virtual service chains is similar to the Virtual Network Em-

bedding (VNE) problem [37, 68]. Similar to VNE, this task is NP-hard. Different VF

placement schemes have been proposed [42, 61]. Formulated as an optimization prob-

lem, VF placement and chaining reduces to an integer program, which is NP-hard and

intractable for larger inputs. Hence, most solutions focus on designing heuristic or meta-

heuristic algorithms for solving the VF placement with service chaining [42, 72]. These

24

solutions aim to find a sub-optimal placement quickly and are based on simple cost func-

tions and constraints. In this work, we aim to find an optimal placement based on a de-

tailed system model that captures many complexities that arise with virtualized services

for a 5G network, including multi-technology links and detailed service demands. More-

over, we provide a heuristic solution to quickly solve the problem while sacrificing little on

the quality of the results.

3.2.2 Traffic Steering

Traffic steering through VF instances residing at different locations brings a different set of

challenges. Traditionally, traffic is directed through a desired sequence of network func-

tions (middleboxes) using manual configurations, which cannot be imported to the VF

paradigm. Since resources are dynamically allocated, there is a need for autonomic traffic

steering. SDN offers a flexible control approach and enables traffic forwarding. However,

SDN capabilities have been limited to L2/L3 forwarding functions and cannot support

VFs. SDN based solutions have been proposed [36, 66, 85], which extend the current

L2/L3 functions of SDN to provide a policy enforcement layer for VF traffic steering. Al-

though extended SDN mechanisms have enabled VF traffic steering, finding the best path

through a set of VFs under multiple constraints is NP-complete [65]. Previous work fo-

cuses on finding paths given the cost function of a single link technology [42, 21]. In this

work, we consider multiple link technologies, each has its own cost definition. Further-

more, the link cost function takes into account multiple cost metrics to accurately model

the link technologies.

25

3.3 System Model

This section describes our envisioned 5G system model for edge computing. We also

describe our use cases (augmented and virtual reality applications) which have stringent

processing and communication requirements that “thin” clients/mobile devices and tradi-

tional networks fail to support.

Our model of the 5G infrastructure consists of a multi-technology edge network, where

nodes are connected with wireless mmWave and wired links, as shown in Figure 3.1b.

Nodes that are closer than a threshold distance are connected with mmWave links. There

are two types of nodes in the network. Routing Nodes (RN) are OpenFlow enabled routers

that forward packets to the next hop toward their destination. Processing Nodes (PN) are

RNs with processing power, so a PN can also host Virtual Functions (VFs). A PN has

multiple processing cores. For simplicity, we assume that a single core can only host a

single VF instance.

There are costs associated with using the network. There is a fixed cost of running

a VF instance on a PN. There are two different types of cost associated with using a

communication link, namely, fixed cost and usage cost. A fixed cost is incurred if the link

is being used, regardless of the amount of traffic flowing through the link. A usage cost is

based on the cost per unit of traffic flowing through the link.

Each flow in the network has a source node, destination node, capacity demand, de-

lay demand, and service chain. We model the long-term average rate requirement for an

application. The capacity demand is the bit rate that a flow needs on each link as it goes

from its source to destination. The delay demand is the maximum delay that packets of

the flow can experience as they move from the source to destination. A service chain, as

we discussed earlier, is an ordered list of VFs that the flow should pass through before

reaching the destination node. This is shown in Figure 3.1a where an application flow

26

passes through VFs running Authentication, Processing, and Caching before reaching the

destination application server.

Online vs Offline

The resource allocation problem consists of placement of VFs and traffic steering, and

it can be done either online or offline. In the online case, the resources are dynamically

allocated for each flow as the flow arrives to the system. In the offline case, all the flow de-

mands are known in advance and the resources are simultaneously allocated for all flows.

Both the online and offline cases areNP-hard [71]. The offline resource provisioning case

is not always possible, especially when users’ behavior cannot be accurately predicted. In

this work, we only consider the online case. In the next section, we provide a detailed

Binary Integer Programming (BIP) formulation for this problem, which can be used for

both online and offline cases. Note that the online case is merely the offline case with a

single flow.

To evaluate our system, we model the workload of service chains inspired by appli-

cations such as augmented and virtual reality applications. VR/AR applications requires

high throughput and ultra-low latency. It is believed that VR applications, where users

interact with other users, would need bandwidth up to 500Mbps and latency less than 5ms

[25]. The challenge in advancing and deploying such applications is that traditional archi-

tectures (using remote clouds/datacenters) fail to satisfy such stringent requirements. To

overcome this challenge, the VR application should be refactored as a chain of VFs that

get deployed at the edge cloud. For instance, the 3D distributed game described in [52]

may be decomposed into a chain of VFs as illustrated in Figure 3.2. The aim is to move

most computation from Application Servers to the 5G edge network, to reduce latency

and increase throughput. As shown in Figure 3.2, when a user’s request arrives, it first

27

Processing
& storage

Encoding/
Transcoding

Local Edge Network

Internet

Servers

UE

Authentication &
access control

Figure 3.2: Virtual Reality use case

Authentication &
access control

Localization /
Tracking

Encoding/
Transcoding

Local Edge Network
Internet

Servers
Embedding /
Processing /

storageUE

Figure 3.3: Augmented Reality use case

goes through the Authentication and Access Control VF to identify the user and check if

the user is allowed to make the request. The request then moves to the Processing and

Storage VF where the request is processed and actions are taken. These actions are also

propagated to application servers over the Internet to update the global state of the game.

This VF also has storage capability so it can provide caching and deliver data directly to

the user. The delivered data finally moves through the Encoding/Transcoding VF, where

data is encoded/transcoded before being sent to the user. A similar case for AR is shown

in Figure 3.3.

28

3.4 Mathematical Model

In this section, we present the Binary Integer Programming (BIP) formulation for the joint

placement of virtualized services (VFs) and traffic steering across the service chains. Al-

though our formulation targets our envisioned 5G system model described in Section 3.3,

it can be applied to other scenarios by making appropriate changes to cost functions or

constraints. Our model can be used by a 5G “service” provider to optimally allocate re-

sources to service chains, as we describe in this section. Specifically, we aim to minimize

the operational (OPEX) cost by maximizing the resource utilization of the physical infras-

tructure while satisfying the network delay and bandwidth requirements of the application

virtual functions. Note that since we are interested in modeling the network requirements

of an application, our constraints are on network parameters. For machine-specific appli-

cation requirements, such as the amount of memory, or the number of GPUs, additional

constraints can be added to the model. All network parameters are described in Table 3.1.

(Later in Section 3.5, we use this model, in conjunction with a network graph generation

model, to also understand the benefits of deploying mmWave links from the point of view

of a 5G “infrastructure” provider.)

In our model, a physical (or logical) network G(V, E) is made up of nodes V , and links

E between the nodes. Each link has capacity c(u, v) and latency l(u, v). The fixed cost of

using a link is given by kc
(u,v), and it captures the cost incurred if the link is used by any

flow. The usage cost of a link is given by kd
(u,v), which represents the cost per unit of flow

that passes through the link. The cost of starting a new virtualized function instance on a

Processing Node (PN) is given by hn
i . Each PN has a set of cores available Ov, and each

virtual function runs on a single core. Each VF has a load limit Us (in Mbps) on the total bit

rate that is served by the VF instance. Each PN can host certain types of VF n, as indicated

by Mn
i . The volume of the incoming flow and outgoing flow through a VF changes based

29

Notation Description

G(V, E)
Network graph, V is the set of nodes: Routing Nodes (RNs) and
Processing Nodes (PNs), and E is the set of all links (u, v).

w(u,v)
binary {0,1}: 1 if there exists a physical link between nodes u and v, 0
otherwise.

c(u, v) Capacity of link (u, v).
l(u, v) Latency of link (u, v).

kc
(u,v)

Fixed cost of using link (u, v). If any amount of traffic, greater than
zero, passes through link (u, v), we incur this cost.

kd
(u,v)

Usage cost of using link (u, v). It is the cost of unit flow that passes
through link (u, v).

hn
i Fixed cost of instantiating a VF instance of type n on node i ∈ V .

Ov Set of cores available at node v ∈ V . Each core can support one VF.
Us Load (in Mbps) that can be served by a single VF s ∈ S .
Mn

i binary {0,1}: 1 if VF n ∈ S can be supported at node i, 0 otherwise.
φs Ratio of outgoing to incoming flow rate through VF s ∈ S .

Table 3.1: Network Parameters.

on the computation performed by the VF, e.g., an encryption VF encrypts incoming traffic,

so the amount of outgoing traffic leaving the VF is more than the incoming traffic. The

ratio of the outgoing bit rate (in Mbps) over the incoming bit rate (in Mbps) for a VF is

given by φs.

Table 3.2 shows the traffic parameters. Each flow f in the network has a start node

s f , destination node t f , initial capacity demand (in Mbps) d f , latency demand (in millisec-

onds) l f , and a service chain C f . A flow is unsatisfied if any of its constraints are not met.

As the flow traverses through the VFs in its service chain, its capacity demand changes

based on the VF’s φi. The capacity demand of a flow between two VFs is given by d f (m→n).

3.4.1 Variables

Table 3.3 describes our model variables in detail. This includes decision variables, and

derived variables (i.e., variables dependent on decision variables).

30

Notation Description
F Set of all flows in the network.
s f Start node of flow f ∈ F.
t f Destination node of flow f ∈ F.
d f Initial capacity demand of flow f ∈ F.

l f Latency demand of flow f ∈ F. Maximum delay that a flow f ∈ F can
tolerate on the path from source to destination.

K Set of all different VFs that can be placed on nodes.

C f Service chain of flow f ∈ F. Set of VFs that flow f ∈ F needs to
traverse in a specific order, i.e. n1 → n2 → ...→ nl, where ni ∈ K.

C f
st

C f
st = [ns f → C f → nt f]. The service chain of flow f ∈ F which

includes s f and t f nodes. To ensure that the flow starts at node s f and
ends at node t f , two imaginary VFs ns f and nt f are introduced at s f and
t f nodes, respectively. Since VFs ns f and nt f are only present at s f and
t f nodes, these nodes are selected as the start and end nodes on the
flow’s path.

d f (m→n)

Capacity demand of flow f ∈ F from VF m to n.

d f (m→n) = d f
m∏

i=s f

φi, (note : φs f = 1)

Table 3.2: Traffic Parameters.

3.4.2 BIP Formulation

3.4.2.1 Objective Function

Our objective is to find the optimal placement of VFs that minimizes the resource frag-

mentation in the system, i.e., maximizes the utilization of resources, while satisfying the

delay and bandwidth requirements of the applications. Since physical resources in the net-

work are usually leased or rented from third parties, we aim to maximize the utilization of

resources that are already in use as long as we can satisfy the flow demands. Following

are the costs that we consider, and we aim to minimize.

31

Variables Description

x f (m→n)
(u,v)

binary {0,1}: 1 if link (u, v) is used to reach from VF m to n in the
service chain C f of flow f ∈ F, and 0 otherwise.

x(u,v)

binary {0,1}: 1 if any flow uses link (u, v), and 0 otherwise. Note that
it is not a decision variable, as it can be derived from x f (m→n)

(u,v) .
x(u,v) = 1 if∑

f∈F

∑
(m→n)∈C f

st

x f (m→n)
(u,v) +

∑
f∈F

∑
(m→n)∈C f

st

x f (m→n)
(v,u) > 0 ∀(u, v) ∈ E (3.1)

and 0 otherwise.
Equation (3.1) above can also be written as a set of linear constraints as
shown below.

x(u,v) ≤
∑
f∈F

∑
(m→n)∈C f

st

x f (m→n)
(u,v) +

∑
f∈F

∑
(m→n)∈C f

st

x f (m→n)
(v,u) ∀(u, v) ∈ E

x(u,v) ≥ x f (m→n)
(u,v) ∀ f ∈ F, ∀(m→ n) ∈ C f

st, ∀(u, v) ∈ E

x(u,v) ≥ x f (m→n)
(v,u) ∀ f ∈ F, ∀(m→ n) ∈ C f

st, ∀(u, v) ∈ E

Since x(u,v) is symmetrical, we also want to enforce that x(u,v) = x(v,u)

S f n
ia

binary {0,1}: 1 if VF n ∈ C f
st is placed at core a of node i for flow

f ∈ F, and 0 otherwise.

Xn
ia

binary {0,1}: 1 if any VF n ∈ K is placed on core a of node i, 0
otherwise. Note that it is not a decision variable as it can be derived
from S f n

ia .
Xn

ia = 1 if ∑
f∈F

S f n
ia ≥ 1 ∀n ∈ C f ,∀i ∈ V,∀a ∈ Oi (3.2)

and 0 otherwise.
Equation (3.2) above can also be written as a set of linear constraints as
shown below.

Xn
ia ≤

∑
f∈F

S f n
ia ∀n ∈ C f ,∀i ∈ V,∀a ∈ Oi

Xn
ia ≥ S f n

ia ∀n ∈ C f ,∀i ∈ V,∀a ∈ Oi,∀ f ∈ F

Table 3.3: Variables.

32

VF Deployment Cost

To run a VF on a node, we assume a pricing/cost model that is similar to Amazon EC2

“dedicated host”, in which a fixed cost is paid for leasing/renting the node on which the

VF instance is run.

Vc =
∑
i∈V

∑
n∈K

∑
a∈Oi

hn
i Xn

ia (3.3)

Link Fixed Cost

If a link is used (in any direction) by any of the flows, regardless of the flow demand, we

pay a fixed cost. Different link technologies (namely, Wire and mmWave links) can have

different fixed costs, which we explain in detail later in Section 3.5.

Ec =
∑

(u,v)∈E

kc
(u,v)x(u,v) ∀(u, v) ∈ E, u > v (3.4)

Link Usage Cost

This link usage cost is based on the amount of link resources used by flows. It represents

the cost per unit of flow going through a link.

Ed =
∑

(u,v)∈E

kd
(u,v)

∑
f∈F

∑
(m→n)∈C f

st

x f (m→n)
(u,v) d f (m→n) (3.5)

Our objective is to minimize the cost of the system and fragmentation of the resources

in the system, while satisfying the flow demands. The objective function is given by:

minimize(Vc + Ec + Ed)

This cost minimization is subject to the following constraints:

33

3.4.2.2 Link Capacity Constraint∑
f∈F

∑
(m→n)∈C f

st

d f (m→n)x f (m→n)
(u,v) ≤ c(u, v) ∀(u, v) ∈ E (3.6)

Each link has a capacity limit. Flows passing through a link should not exceed the capacity

of the link.

3.4.2.3 Flow Latency Constraint∑
(m→n)∈C f

st

∑
(u,v)∈E

l(u, v)x f (m→n)
(u,v) ≤ l f ∀ f ∈ F (3.7)

Each flow has a latency constraint. A flow, moving from source to destination, should not

experience latency greater than its (end-to-end) latency requirement. Here we are only

considering network delays, i.e., propagation and transmission delays.

3.4.2.4 Physical Link Constraint

x f (m→n)
(u,v) ≤ w(u,v) (m→ n) ∈ C f

st (3.8)

A virtual link along the path of a flow should be using one of the existing physical links

given by w(u, v).

3.4.2.5 Flow Constraint∑
j∈V

x f (m→n)
(i, j) −

∑
k∈V

x f (m→n)
(k,i) =

∑
a∈Oi

S f m
ia −

∑
a∈Oi

S f n
ia (3.9)

∀i ∈ V, (m→ n) ∈ C f
st, where VF n is after VF m in the service chain C f

st.

This constraint ensures that there is a single continuous path between pair of nodes on

which VFs m and n are placed.

34

3.4.2.6 VF Placement Constraint

S f n
ia ≤ Mn

i ∀ f ∈ F,∀n ∈ C f
st,∀i ∈ V,∀a ∈ Oi (3.10)

VF n ∈ C f
st can only be hosted on nodes that can host VF n.

3.4.2.7 Single VF Node Selection Constraint∑
i∈V

∑
a∈Oi

S f n
ia = 1 ∀n ∈ C f

st (3.11)

Only a single node is selected to host a VF in the service chain C f
st of flow f ∈ F.

3.4.2.8 Node Capacity Constraint∑
n∈K

∑
a∈Oi

Xn
ia ≤ |Oi| ∀i ∈ V (3.12)

Each free core at a node can host a single VF. The number of VFs hosted at a node is

limited by the number of cores available at that node.

3.4.2.9 VF Capacity Constraint∑
f∈F

d f (m→n)S f n
ia ≤ Un ∀i ∈ V, ∀a ∈ Oi, ∀n ∈ C f (3.13)

Each VF at a node has a capacity limit and can only serve flow demands (in Mbps) within

that limit.

3.4.2.10 Single VF per core∑
n∈C f

S f n
ia <= 1 ∀ f ∈ F ∀i ∈ V ∀a ∈ Oi (3.14)

Each core at a node can host at most one VF.

35

3.5 Evaluation Model, Parameters and Proposed Heuristic

In this section, we present our evaluation model and parameters for both the edge network

and the workload of VR and AR service chains. We then provide a description of our

proposed heuristic.

3.5.1 Edge Network Graphs

We used different types of edge network topologies for the simulation. We generated

synthetic graphs using BRITE [60], a widely used network graph generator. Moreover, we

used real edge network topologies for two cities, Santa Monica (CA, USA) and Palo Alto

(CA, USA). Next, we explain the topologies generated using each technique.

3.5.1.1 Synthetic Edge Network Topology using BRITE

BRITE is a widely used network graph generator [60]. BRITE supports multiple graph

generation models, including models for flat and hierarchical graphs. BRITE separates

the placement of the nodes from the process of growing the graph and interconnecting

the nodes. We use BRITE’s random node placement model for placing nodes in a plane,

and BRITE’s Waxman model for interconnecting the nodes probabilistically [81]. BRITE

network has 25 nodes and node density of 6.25 nodes/km2.

3.5.1.2 Real Edge Network Topology

We used real city network topologies to generate edge networks. We used the optical fiber

network topology of two cities in the USA. The original wired network topologies for

Santa Monica and Palo Alto are shown in Figures 3.4a and 3.5a, respectively. We mapped

the original topologies onto the Google Maps [40], as shown in Figures 3.4b and 3.5b.

Mapping a topology on Google Maps helped us find coordinates of different points on the

36

maps. The original maps do not show the router nodes. We assumed there exists a router

node at the intersection of the wires and the end of each wire. Moreover, we introduced

some additional router nodes within long-distance links for the Santa Monica topology,

marked by cyan color in Figure 3.4b.

Santa Monica:

We used the wired network topology for Santa Monica, CA, USA. As shown in Figure 3.4,

Santa Monica’s wired network topology is a distributed bus topology [43], with few con-

nections between backbone bus lines. Distributed bus topology is a widely used edge

network topology for city networks. Santa Monica wired network has 43 nodes and a

node density of 3.61 nodes/km2.

(a) Original Topology (b) Generated Topology

Figure 3.4: Santa Monica network topology

Palo Alto:

We used the wired network topology for Palo Alto, CA, USA. As shown in Figure 3.5,

37

Palo Alto’s wired network topology is a ring topology with few connections across the

diameter of the ring network. Ring topology is a widely used edge network topology

for city networks. Palo Alto wired network has 36 nodes and a node density of 0.91

nodes/km2.

(a) Original Topology (b) Generated Topology

Figure 3.5: Palo Alto network topology

3.5.1.3 Adding mmWave links

The initial topologies that we generate represents a base edge network that consists of only

wired links. We then augment this base graph with mmWave links to obtain three different

types of graph, which are described next.

Wire: This is the initial graph generated with only wired links. An example of such graph

is shown in Figure 3.6a.

Single: mmWave links are added to the Wire graph if the distance between any two nodes

in the graph is less than a given distance/mmWave-range (elaborated on below). However,

38

R1

R5
P1

P2R4

R3

R2

a) Wire: wired links only b) Single: mmWave when no wired c) Dual: mmWave & wired

R1

R5
P1

P2R4

R3

R2

R1

R5
P1

P2R4

R3

R2
wired link
mmWave link

Figure 3.6: Multi-technology edge network consisting of processing and routing nodes.

if there is already a wired link between the two nodes, a mmWave link is not added. So we

have only a single type of link technology (mmWave or Wire) between any two nodes, as

shown in Figure 3.6b.

Dual: mmWave links are added to the Wire graph if the distance between any two nodes

in the graph is less than a given distance/mmWave-range (elaborated on below). In this

scenario, two nodes may have dual technology links, i.e., both mmWave and Wire links, as

shown in Figure 3.6c. Dual has the maximum number of possible mmWave links between

nodes in the network.

Characteristics of different graphs for our evaluation, in terms of nodes, area and links,

are summarized in Table 3.4. Graphs generated using BRITE covers a small area of 4.0

km2 and has the highest node density of 6.25 nodes/km2. Santa Monica has area of 11.90

km2 and a node density of 3.61 nodes/km2 and Palo Alto has area of 39.65 km2 and the

lowest node density of 0.91 nodes/km2. Because of the differences in the node density,

BRITE has the highest percentage of mmWave links. Santa Monica has the second highest

percentage of mmWave links and Palo Alto has the lowest percentage of mmWave links.

Table 3.5 shows the various parameters used in our evaluation campaign. The range of

a mmWave link is defined by variable rangemm. Two nodes in the network cannot have a

mmWave link if their distance is beyond rangemm. rangemm is chosen to be 500m, which

can be achieved in urban environments with LOS [26]. The capacity of mmWave links can

39

BRITE
Type # Nodes Area Technology avg. # of links %age of links

Dual 25 4.0 km2 mmWave 47.4 65.5
Wire 25 34.5

Single 25 4.0 km2 mmWave 35.6 58.8
Wire 25 41.2

Wire 25 4.0 km2 mmWave 0 0.0
Wire 25 100

Santa Monica
Type # Nodes Area Technology avg. # of links %age of links

Dual 43 11.90 km2 mmWave 90 62.50
Wire 54 37.50

Single 43 11.90 km2 mmWave 65 54.62
Wire 54 45.38

Wire 43 11.90 km2 mmWave 0 0.0
Wire 54 100

Palo Alto
Type # Nodes Area Technology avg. # of links %age of links

Dual 36 39.65 km2 mmWave 44 50.57
Wire 43 49.43

Single 36 39.65 km2 mmWave 18 29.51
Wire 43 70.49

Wire 36 39.65 km2 mmWave 0 0.0
Wire 43 100

Table 3.4: Graph Parameters and Characteristics

vary in the 1 Gbps–10 Gbps range, based on channel conditions [82]. We have taken the

link capacity c(u, v)mm to be 2 Gbps for mmWave links [82], and c(u, v)w to be 10 Gbps for

Wire links.

The fixed cost for using a mmWave link, kcmm
(u,v), is kept low by setting it to 1, since it

is less costly to establish mmWave links between two sites if they are within the range

rangemm. On the other hand, the fixed cost for Wire links is higher, and so we set it to 50,

since Wire links are usually leased / rented from an infrastructure provider.

The usage cost for mmWave links, kdmm
(u,v), is dependent on link performance and is set

40

Parameter Description Value
rangemm mmWave range 500 m
c(u, v)mm Capacity of mmWave links 2 Gbps
c(u, v)w Capacity of Wire links 10 Gbps

kcmm
(u,v) Fixed cost for using mmWave link 1

kcw
(u,v) Fixed cost for using Wire link 50

kdmm
(u,v) Cost per unit flow for using mmWave link 1/PS

kdw
(u,v) Cost per unit flow for using Wire link 1

l(u,v)
Latency of link (u, v) is the sum of propagation and
transmission delays

-

hn
i Fixed cost of instantiating a VF instance of type n on node i 200
|Ov| Number of cores available at processing node v 10
Us Capacity of the VF s 15 Gbps

ratioPN Ratio of processing nodes to routing nodes 0.3

Table 3.5: Evaluation Parameters

0 100 200 300 400 500

distance (m)

0

0.2

0.4

0.6

0.8

1

P
ro

b
.
o
f
s
u
c
c
e
s
s

(P
S

)

Figure 3.7: Probability of successful bit delivery over a mmWave link

to 1/PS , where PS is the probability that a bit sent over the link successfully reaches the

other side. PS is obtained using the empirical studies on mmWave technology described

in [69, 73]. Figure 3.7 shows PS as a function of distance. Note that the usage cost

kdmm
(u,v) becomes significantly higher as the distance between the two nodes connected via a

mmWave link increases. Hence, shorter mmWave links are favored over longer mmWave

links. For Wire links, the usage cost kdw
(u,v) = 1, since the cost (delivery performance penalty)

associated with using Wire is relatively much lower. The latency of a link is given by l(u, v),

41

and is equal to the sum of propagation and transmission delays. Note that there will be

zero or negligible queuing delays when demands match allocated capacities.

We select a fraction of the nodes in the network graph to be processing nodes (PNs).

This ratio, denoted by ratioPN , is set to 0.3, i.e. only 30% of the nodes are PNs. Each PN

node has |Ov| cores available, and we set |Ov| = 4. This means that each PN can host at

most 4 VFs. The capacity of a single VF Us is set to 15 Gbps. The cost associated with

instantiating a VF hn
i is set to 200. It represents the cost of leasing a virtual machine or

container from the edge datacenter. A high value has the effect of packing as many flows

as possible on a VF as long as the flow demands can still be fulfilled. Next, we explain the

process of selecting processing nodes.

3.5.1.4 Processing Node Selection

We assume that any node in the network can be chosen as a processing node. ratioPN

fraction of nodes are selected as processing nodes. Processing nodes are selected such that

the sum of the distances from each node to the closest processing node is minimized.

We formulate this problem as Integer Linear Program (ILP). The distance from the

node i to processing node (PN) p is denoted by cpi. X is the total number of processing

nodes. Note that the nodes and the processing nodes share the same set of points. We

define the following variables:

zpi = 1 if node i is satisfied by PN p, 0 otherwise

xp = 1 if PN p is being used, 0 otherwise

We formulate the problem as integer-optimization model.

minimize
∑
p∈N

∑
i∈N

cpizpi

Subject to:

42

1. The total number of processing nodes are equal to X

∑
p∈N

xp = X

2. A single processing node p is selected for each node i

∑
p∈N

zpi = 1 ∀i ∈ N

3. xp = 1 if node p is selected as PN

zpi ≤ xp ∀p ∈ N ∀i ∈ N

∑
p∈N

zpi ≥ xp ∀x ∈ N

We used CPLEX solver1 to solve the ILP above for the selection of processing nodes

for Santa Monica and Palo Alto network graphs. Since the graphs generated using BRITE

are synthetic, we generated multiple graph topologies and randomly selected processing

nodes.

3.5.2 Input Flow Parameters

There are two different types of flow in the network, each type has different service chain

requirements representing either Virtual Reality (VR) or Augmented Reality (AR). For

each of the generated network graphs, we generate five sets of flows, where each incoming

flow is either VR or AR flow with probability 0.5. Each flow starts and ends at the same

node (representing the user/client), which is randomly selected. We only consider the

allocation of the service chains on the edge network. Flow parameters for VR and AR

1 IBM ILOG CPLEX Optimizer,
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer

43

flows are described in Table 3.6.

For VR flows, the initial VR flow demand d f
VR is normally distributed with mean 10

Mbps and standard deviation 2 Mbps. The flow passes through three different VFs, as

shown in Figure 3.2, with each VF s having a different value for φs (ratio of outgoing to

incoming flow rate). The values that we considered for φs for different VR VFs are shown

in Table 3.6. As an example, a VR flow generates requests at 10 Mbps. These requests

pass through the Authentication & Access control VF and yield 9 Mbps of admissible

requests. These admissible requests pass through the Processing & Storage VF yielding

data at the rate of 180 Mbps, which after the Encoding / Transcoding VF becomes 144

Mbps. Similarly, AR flows passes through four different VFs, as shown in Figure 3.3, and

AR flow parameters are described in Table 3.6.

3.5.3 Proposed Heuristic

We used the CPLEX solver to solve the BIP that we described in Section 3.4.2. The

running time for obtaining the optimal solution for each of our evaluation experiments

is significantly high because of the NP-hardness of the problem. To reduce the running

time, Algorithm 1 shows a fast heuristic whose solution we compare against the CPLEX

solution in terms of performance and running time.

This heuristic takes a flow and returns a least cost path, while fulfilling the flow re-

quirements. It takes the current state of the network graph (G with nodes, edges, residual

link capacities, fixed and dynamic costs, processing nodes) as input, along with the input

flow requirements, i.e., source and destination nodes, service chain, flow latency and φi

(bandwidth ratio after the use of each VF along the chain).

Initially (line 1), we use the function getFeasibleGraph to get a subgraph (G′) from

the original graph G that includes only those links that have enough capacity to satisfy the

44

VR Flow
Parameter Description Value

d f
VR Initial flow demand

µ = 10 Mbps
σ = 2 Mbps

l f
VR Latency demand

µ = 5 ms
σ = 1 ms

φA&AC
Ratio of outgoing to incoming flow rate through the
Authentication & access control VF

0.9

φP&S
Ratio of outgoing to incoming flow rate through the
Processing & storage VF

20

φE&T
Ratio of outgoing to incoming flow rate through the
Encoding / Transcoding VF

0.8

AR Flow
Parameter Description Value

d f
AR Initial flow demand

µ = 150 Mbps
σ = 20 Mbps

l f
AR Latency demand

µ = 4 ms
σ = 1 ms

φA&AC
Ratio of outgoing to incoming flow rate through the
Authentication & access control VF

0.9

φL&Tk
Ratio of outgoing to incoming flow rate through the
Localization / Tracking VF

0.9

φE/P/S
Ratio of outgoing to incoming flow rate through the
Embedding / Processing / Storage VF

1

φE&T
Ratio of outgoing to incoming flow rate through the
Encoding / Transcoding VF

0.8

Table 3.6: Flow Parameters

flow end-to-end rate demand. getNearbyPN (line 2) finds the q nearest (in number of hops)

processing nodes (PN s f

q) from the source (s f) on subgraph G′ using Dijkstra’s shortest

path algorithm. After getting PN s f

q processing nodes, getShortestPaths is invoked (line 3)

which calculates all possible least-cost paths through every permutation of the processing

nodes in PN s f

q . While calculating paths, getShortestPaths makes sure that for each path,

the segment from the source to the first processing node has available capacity that is at

least equal to the rate outgoing from the source (d f). Also, from the first processing node

45

Algorithm 1 Service Chain Placement Heuristic
Input:
f : incoming flow
G(V, E): Network graph, V is set of nodes and E is set of links
PN: set of processing nodes, where PN ⊆ V
q: number of nearest processing nodes used for virtual function placement
Output: minPath

1: G′ = getFeasibleGraph(G, f); // subgraph G’(V,E’), E’ can carry flow demand
2: PN s f

q = getNearbyPN(G′, s f , PN, q);// get set of q nearby processing nodes
3: P f = getS hortestPaths(PN s f

q , G, f);//all possible paths through processing nodes
4: minPath = null
5: minPathCost =∞

6: for path p in P f do
7: if pathFeasible(p, l f , d f) then
8: c f

p = getCost(p, f) // cost = fixed cost + usage cost + VF placement cost
9: if c f

p < minPathCost then
10: minPathCost = c f

p

11: minPath = p
12: end if
13: end if
14: end for

to the last processing node, it has the maximum possible capacity required by the flow, and

from the last node to the destination, it has at least a capacity of d f ∏nl

i=s f φi.

Next, we evaluate each path individually. We perform additional feasibility checks

using pathFeasible in line 7. pathFeasible checks if the path’s latency is less than the

flow’s end-to-end latency requirement and the path can provide/deploy the function chain.

If the path is feasible, we calculate the cost of allocating the flow f on the path p using

the function getCost (line 8); the cost includes link usage and VF deployment cost along

the path p. Here, we take a greedy approach where we try to use VFs that are already

deployed along the path, otherwise collocate other missing VFs on the same processing

node(s) if feasible. After evaluating all paths in P f , we pick the path with the lowest cost

for the flow.

46

3.6 Evaluation Results

In this section, we discuss the results of our study where we evaluate the performance

and cost of allocating service chains as flows arrive to the edge network. We consider the

following performance metrics: (1) Flow Acceptance Ratio: is the ratio of flows accepted

(i.e., resources are available to allocate to these flows) to the total number of flow arrivals,

(2) Virtual Capacity Allocated: is the total virtual capacity of all links along the service

chains of accepted flows, and (3) Average Link Utilization: is the ratio of link usage over

link capacity averaged over all links, or over each of the two types of link (Wire and

mmWave). Results are shown for BRITE, Santa Monica and Palo Alto topologies. For

each type of typology, results with 90% confidence intervals are shown for Wire, Single,

and Dual networks for both BIP and Heuristic.

Observations: Before presenting the details of our results, we summarize our main ob-

servations as follows: (1) Augmenting the physical (Wire) infrastructure with mmWave

links yields significantly higher flow acceptance ratio and virtual capacity allocated (up

to 20% higher); (2) Most significant gains using mmWave links are in high node density

network, where nodes are closer to each other, and a reliable mmWave links can be estab-

lished between the nodes. (3) These mmWave links should complement the connectivity

provided by Wire links and only a small number of mmWave links needs to be deployed

to achieve most performance gains; (4) The flexibility in resource allocation afforded by

decomposing applications into service chains that can be deployed anywhere on the edge

infrastructure yields significant gains (up to three times higher accepted virtual capacity)

over a traditional “middlebox” static deployment; and (5) The proposed heuristic decreases

the running time by up to one order of magnitude when compared with BIP while giving

performance results close to BIP.

The cost versus running time for BIP and our heuristic is shown in Figure 3.8 for

47

10
0

10
1

10
2

Time (sec)

0

1

2

3

4

C
o
st

10
4

BIP(offline)

BIP(online)

Heuristic

Figure 3.8: Cost vs running time comparison of BIP vs Heuristic

the Dual scenario. As explained in Section 3.3, in the BIP online case, the resources

are dynamically allocated for each flow as it arrives, while in the offline case, all flow

demands are known in advance and resources are simultaneously allocated for all flows.

Since offline has advance knowledge of all flow demands, it can efficiently allocate the

flows on the network and the cost is lowest. However, the running time for offline is orders

of magnitude larger than the online case. The proposed heuristic yields a cost comparable

to the BIP online case, with running time that is one order of magnitude lower. The offline

resource provisioning is not always possible since we cannot accurately predict incoming

flows. For this reason, in the remainder of the chapter, results are shown for the BIP online

case.

Figure 3.9 shows the flow acceptance ratio of BRITE, Santa Monica, and Palo Alto

as a function of incoming flows for different types of network. The high node-density

networks of BRITE and Santa Monica with mmWave links (Single and Dual) accept more

flows than the same network with only wired links (Wire). The low-density network of

Palo Alto yields little/no gain with mmWave links. As the density of nodes decreases, the

probability of having a mmWave link between two nodes (within range) is small. This

48

200 400 600 800 1000

Incoming flows

0

0.2

0.4

0.6

0.8

1

A
cc

ep
ta

n
ce

 R
at

io

Wire

Single

Dual

BIP

Wire

Single

Dual

Heuristic

(a) Acceptance Ratio for BRITE

500 1000 1500 2000

Incoming flows

0

0.2

0.4

0.6

0.8

1

A
cc

ep
ta

n
ce

 R
at

io

Wire

Single

Dual

BIP

Wire

Single

Dual

Heuristic

(b) Acceptance Ratio for Santa Monica

500 1000 1500 2000 2500

Incoming flows

0

0.2

0.4

0.6

0.8

1

A
cc

ep
ta

n
ce

 R
at

io

Wire

Single

Dual

BIP

Wire

Single

Dual

Heuristic

(c) Acceptance Ratio for Palo Alto

Figure 3.9: Flow Acceptance Ratio for Wire, Single and Dual networks with BIP and
Heuristic

yields a network with sparse mmWave links, thus a small increase in the connectivity and

capacity of the network, and a little/no increase in the accepted flows. This difference is

more significant in high-density networks. The percentage of mmWave links are higher

in high-density networks as nodes are closer to each other, and the probability of having

mmWave links between two nodes (within range) is higher. This yields a network that

is better connected and with increased capacity. Thus, we observe a higher number of

accepted flows.

Since each flow can have different capacity requirements along its virtual service chain,

the number of flows accepted does not necessarily mean that the network capacity is ef-

49

0 200 400 600 800 1000

Incoming flows

0

0.5

1

1.5

2

2.5

3

3.5

V
ir

tu
al

 C
ap

ac
it

y
 A

ll
o

ca
te

d
 (

M
b

p
s) 10

5

Wire

Single

Dual

BIP

Wire

Single

Dual

Heuristic

(a) Virtual Capacity Allocated for BRITE

0 500 1000 1500 2000 2500

Incoming flows

0

0.5

1

1.5

2

V
ir

tu
al

 C
ap

ac
it

y
 A

ll
o

ca
te

d
 (

M
b

p
s) 10

6

Wire

Single

Dual

BIP

Wire

Single

Dual

Heuristic

(b) Virtual Capacity Allocated for Santa
Monica

0 500 1000 1500 2000 2500 3000

Incoming flows

2

4

6

8

10

12

14

16

V
ir

tu
al

 C
ap

ac
it

y
 A

ll
o

ca
te

d
 (

M
b

p
s) 10

5

Wire

Single

Dual

BIP

Wire

Single

Dual

Heuristic

(c) Virtual Capacity Allocated for Palo Alto

Figure 3.10: Virtual Capacity Allocated for Wire, Single and Dual networks with BIP and
Heuristic

ficiently allocated. Figure 3.10 shows the virtual capacity allocated for BRITE, Santa

Monica and Palo Alto. Again, we see that Single and Dual have higher virtual capacity

allocated than Wire for high node-density networks. There is little/no gain for Palo Alto,

which has low node density. For both Figure 3.9 and Figure 3.10, results obtained by the

proposed heuristic are very close to BIP.

Figures 3.11 to 3.13 show the average link utilization for both mmWave links and Wire

links. We observe that the Wire network has higher link utilization because the network

has lower capacity and links get congested quickly. Figures 3.12 and 3.13 show the link

50

0 200 400 600 800 1000

Incoming flows

0

0.2

0.4

0.6

0.8

1

A
v

g
.

li
n

k
 u

ti
li

za
ti

o
n

Wire

Single

Dual

BIP

Wire

Single

Dual

Heuristic

(a) Average Link Utilization for BRITE

0 500 1000 1500 2000

Incoming flows

0

0.2

0.4

0.6

0.8

1

A
v

g
.

li
n

k
 u

ti
li

za
ti

o
n

Wire

Single

Dual

BIP

Wire

Single

Dual

Heuristic

(b) Average Link Utilization for Santa
Monica

0 500 1000 1500 2000 2500

Incoming flows

0

0.2

0.4

0.6

0.8

1

A
v

g
.

li
n

k
 u

ti
li

za
ti

o
n

Wire

Single

Dual

BIP

Wire

Single

Dual

Heuristic

(c) Average Link Utilization for Palo Alto

Figure 3.11: Average Link Utilization for all links as a function of incoming flows for
Wire, Single and Dual networks

utilization for Wire links, and for mmWave links, respectively. We see in Figure 3.12 that

Wire links are better utilized (up to 20%) when there are mmWave links in the high node-

density networks. The existence of mmWave links makes the network better connected,

which leads to better utilization of the resources and higher number of flows accepted.

Figure 3.13 shows that mmWave links are better utilized (up to 10% in BRITE) in Single

networks compared to Dual networks, although the acceptance ratio and virtual capacity

allocated for both networks are the same. However, mmWave links have higher usage cost.

Thus, initially, when the network is not yet congested, only a few mmWave links are used.

51

0 200 400 600 800 1000

Incoming flows

0

0.2

0.4

0.6

0.8

1

A
v

g
.

li
n

k
 u

ti
li

za
ti

o
n

 (
W

ir
e)

Wire

Single

Dual

BIP

Wire

Single

Dual

Heuristic

(a) Average Link Utilization for BRITE

0 500 1000 1500 2000

Incoming flows

0

0.2

0.4

0.6

0.8

1

A
v

g
.

li
n

k
 u

ti
li

za
ti

o
n

 (
W

ir
e)

Wire

Single

Dual

BIP

Wire

Single

Dual

Heuristic

(b) Average Link Utilization for Santa
Monica

0 500 1000 1500 2000 2500

Incoming flows

0

0.2

0.4

0.6

0.8

1

A
v

g
.

li
n

k
 u

ti
li

za
ti

o
n

 (
W

ir
e)

Wire

Single

Dual

BIP

Wire

Single

Dual

Heuristic

(c) Average Link Utilization for Palo Alto

Figure 3.12: Average Link Utilization for Wire links as a function of incoming flows for
Wire, Single and Dual networks

So initially, the average utilization for mmWave links is low, as shown in Figure 3.13. On

the other hand, as more flows enter the system and the network becomes congested, more

and more mmWave links are used to satisfy the flow demands. This leads to higher utiliza-

tion of mmWave links, but at a higher cost. In all the graphs, the gain is significant in the

high node-density networks. We also provide a comparison with the proposed heuristic.

We observe that the heuristic performance is close to the performance given by BIP.

Figure 3.14 shows the CDF of utilization of the mmWave links for Single scenarios for

BRITE, Santa Monica and Palo Alto. We observe that in the Single scenario, upto 60%

52

0 200 400 600 800 1000

Incoming flows

0

0.2

0.4

0.6

0.8

1

A
v

g
.

li
n

k
 u

ti
li

za
ti

o
n

 (
m

m
W

av
e)

Wire

Single

Dual

BIP

Wire

Single

Dual

Heuristic

(a) Average Link Utilization for BRITE

0 500 1000 1500 2000

Incoming flows

0

0.2

0.4

0.6

0.8

1

A
v

g
.

li
n

k
 u

ti
li

za
ti

o
n

 (
m

m
W

av
e)

Wire

Single

Dual

BIP

Wire

Single

Dual

Heuristic

(b) Average Link Utilization for Santa
Monica

0 500 1000 1500 2000 2500

Incoming flows

0

0.2

0.4

0.6

0.8

1

A
v

g
.

li
n

k
 u

ti
li

za
ti

o
n

 (
m

m
W

av
e)

Wire

Single

Dual

BIP

Wire

Single

Dual

Heuristic

(c) Average Link Utilization for Palo Alto

Figure 3.13: Average Link Utilization for mmWave links as a function of incoming flows
for Single and Dual networks

of the links have utilization of less than 6%, and around 20% of the links are completely

saturated with utilization close to 100%. This shows that significant performance gains

can be achieved by judiciously deploying a small number of mmWave links.

Middlebox Scenario: To highlight the benefit of using (optimal) distributed virtual NF

placement, we compare it with a traditional middlebox scenario. In the middlebox sce-

nario, a powerful hardware appliance, with all the required services, is placed at the edge

of the network. For each network (i.e., Wire, Single and Dual), we chose a single Pro-

cessing Node (PN) to host the middlebox, i.e.. We set this middlebox to be 10 times more

53

0 0.2 0.4 0.6 0.8 1

Link Utilization (mmWave)

0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y

Single

BIP

(a) CDF of mmWave link utilization for
BRITE

0 0.2 0.4 0.6 0.8 1

Link Utilization (mmWave)

0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y

Single

BIP

(b) CDF of mmWave link utilization for
Santa Monica

0 0.2 0.4 0.6 0.8 1

Link Utilization (mmWave)

0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y

Single

BIP

(c) CDF of mmWave link utilization for Palo
Alto

Figure 3.14: CDF of mmWave link utilization for Single networks

powerful (i.e., it can serve 10 times more flows) than a virtualized service placed on a PN,

and it runs all the needed services. Figures 3.15 and 3.16 show the flow acceptance ratio

and virtual capacity allocated, respectively, for the middlebox scenario. The number of

flows accepted in the middlebox case (Figure 3.15) are far lower than that accepted in the

distributed VF placement scenario (Figure 3.9). As shown in Figures 3.10 and 3.16, the

virtual capacity allocated for the distributed VF placement scenario is three times higher

than the traditional middlebox scenario for higher density networks.

Discussion: The results clearly show the benefits of introducing mmWave links in the net-

54

200 400 600 800 1000

Incoming flows

0

0.2

0.4

0.6

0.8

1

A
cc

ep
ta

n
ce

 R
at

io
Wire

Single

Dual

BIP

(a) Acceptance Ratio for BRITE

500 1000 1500 2000

Incoming flows

0

0.2

0.4

0.6

0.8

1

A
cc

ep
ta

n
ce

 R
at

io

Wire

Single

Dual

BIP

(b) Acceptance Ratio for Santa Monica

500 1000 1500 2000 2500

Incoming flows

0

0.2

0.4

0.6

0.8

1

A
cc

ep
ta

n
ce

 R
at

io

Wire

Single

Dual

BIP

(c) Acceptance Ratio for Palo Alto

Figure 3.15: Flow Acceptance Ratio under middlebox schenario for Wire, Single and
Dual networks

work with higher node density. However, it is important to wisely deploy these mmWave

links. As shown in Table 3.4, the Dual network has a larger number of mmWave links

compared to the Single network. However, if we look at the marginal utility of using Dual

over Single, the gains are negligible. The flow acceptance ratio and the virtual capacity

allocated (Figures 3.9 and 3.10) for both cases are within the 90% confidence interval.

Furthermore, the average utilization of links is higher in Single compared to Dual (Figure

3.11) for high density network, which means links are better utilized in the former. Fig-

ure 3.14 also shows that only a small number of mmWave links are needed to achieve most

performance gains. This leads us to conclude that a small number of mmWave links should

55

0 200 400 600 800 1000

Incoming flows

0

0.5

1

1.5

2

2.5

3

3.5

V
ir

tu
al

 C
ap

ac
it

y
 A

ll
o

ca
te

d
 (

M
b

p
s) 10

5

Wire

Single

Dual

BIP

(a) Virtual Capacity Allocated for BRITE

0 500 1000 1500 2000 2500

Incoming flows

0

0.5

1

1.5

2

2.5

3

3.5

4

V
ir

tu
al

 C
ap

ac
it

y
 A

ll
o

ca
te

d
 (

M
b

p
s) 10

5

Wire

Single

Dual

BIP

(b) Virtual Capacity Allocated for Santa
Monica

0 500 1000 1500 2000 2500 3000

Incoming flows

0

0.5

1

1.5

2

2.5

V
ir

tu
al

 C
ap

ac
it

y
 A

ll
o

ca
te

d
 (

M
b

p
s) 10

5

Wire

Single

Dual

BIP

(c) Virtual Capacity Allocated for Palo Alto

Figure 3.16: Virtual Capacity Allocated under middlebox schenario for Wire, Single and
Dual networks

be introduced such that the overall connectivity between the nodes is increased, rather than

to just increase the capacity of the network.

We also note that the middlebox scenario fails to take advantage of introducing mmWave

links, as the number of flows accepted for the Wire network is similar to that for networks

with additional mmWave links (Figures 3.10 and 3.16).

56

3.7 Summary

In this chapter, we studied the problem of allocating resources at the edge in support of en-

visioned 5G applications, e.g., virtual and augmented reality. We presented a model of an

edge network with multiple link technologies, namely, Wire and mmWave. We also devel-

oped a workload model that consists of the service chains with varying capacity require-

ments as the traffic flow traverses its chain. We formulated a binary integer optimization

problem whose objective is to minimize the cost of deploying these service chains over the

edge network, while satisfying their high throughput and ultra-low latency requirements.

We also introduced a fast heuristic to solve the problem. Our extensive evaluations demon-

strate the benefits of managing virtual service chains (by distributing them over the edge

network) compared to a baseline “middlebox” approach (where all services are run on one

host) in terms of overall admissible virtual capacity.

Moreover, we observe significant gains when deploying a small number of mmWave

links that complement the Wire physical infrastructure. We show that a network topology

with a high density of nodes has the highest performance gains since a large number of

reliable mmWave links are formed between the nodes, thus increasing both the capacity

and connectivity of the network.

Chapter 4

Configuring Serverless Functions using

Statistical Learning

4.1 Introduction

Serverless computing has emerged as a new and compelling paradigm for the deployment

of cloud applications and services. It promises new capabilities that make writing scalable

microservices easier and cost effective. Most of the prominent cloud computing providers

have released serverless computing platforms, and there are also several open-source ef-

forts including OpenLambda [44] and OpenWhisk [2].

The serverless paradigm [30] at its core provides developers with a simplified program-

ming model for creating cloud applications that abstracts away most, if not all, operational

concerns. They no longer have to worry about provisioning and managing servers, and

other infrastructure issues. Instead, they can focus on the business aspects of their ap-

plications. The paradigm also lowers the cost of deploying cloud code by charging for

execution time – following a “pay as you go” pricing model [1, 8] – rather than for allo-

cated resources.

In serverless application-development [38], a developer implements the business func-

tionality as a stateless or composition of stateless functions using one or a combination of

the programming languages supported by major cloud providers. Currently, Python and

57

58

AWS
Lambda

Google
Function

IBM
Cloud Function

Memory
(MB)

64 × i
i = {2,3, ... 47}

128 × i
i = {2,4,8,16,24} {256 ... 2048}

Language Python, Nodejs & others Nodejs Python, Nodejs, & others

Billing Execution time based
on memory

Execution time based
on memory & CPU-power

Execution time based
on memory

Configurable memory memory & CPU-power memory

Table 4.1: Serverless platforms

Nodejs are the most common scripting languages supported by major serverless platforms

(c.f. Table 4.1). The developer then submits the code to the cloud provider along with

dependencies (e.g. libraries), and specifies configuration parameters such as memory size

or CPU power. The cloud provider stores this code, and on invocation – which can be

triggered through events or HTTP requests – executes this code either in containerized en-

vironments [2] or virtual machines over varying underlying physical infrastructures, with

the specified configurations. Table 4.1 highlights serverless platforms from three major

cloud providers1. The table shows programming languages supported, billing methodol-

ogy, and memory size or CPU-power options that a user can select.

Serverless computing has given a much-needed agility to developers, abstracted away

the management and maintenance of physical resources, and provided them with a rela-

tively small set of configuration parameters: memory and CPU. While relatively simpler,

configuring the “best” values for these parameters while minimizing cost and meeting per-

formance and delay constraints poses a new set of challenges. This is due to several factors

that can significantly affect the running time of serverless functions.

To highlight the effects of parameter configuration on the performance and cost of

1Note that Microsoft Azure Functions does not provide users with the ability to configure functions
and the cost is based on per-second resource consumption and execution time. In this work, we focus on
configurable functions where users can configure serverless functions to meet service requirements.

59

0 500 1000 1500 2000 2500 3000
Memory (MB)

0

1

2

3

4

5

Pr
ice

/1
00

m
s (

$)

1e 5

(a) Price charged by Amazon Lambda per
100ms of execution for different memory

configurations

0 500 1000 1500 2000 2500 3000
Memory (MB)

0.25

0.50

0.75

1.00

1.25

1.50

Ru
n

Ti
m

e
(m

s)

1e4
CPU Intensive
I/O Intensive
Mem. Intensive

(b) Run-time of functions on Amazon
Lambda for different memory configurations

0 500 1000 1500 2000 2500 3000
Memory (MB)

3.0

3.5

4.0

4.5

5.0

Co
st

 ($
)

1e 5
CPU Intensive
I/O Intensive
Mem. Intensive

(c) Cost for running functions on Amazon
Lambda for different memory configurations

0 10 20 30 40 50
Concurrent Requests

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Ru
nt

im
e

(s
)

(d) Co-location effect on a serverless function
on Apache OpenWhisk

Figure 4.1: Serverless function’s performance with different memory sizes and
co-location

serverless functions, we deployed serverless functions written in Python on AWS Lambda.

In AWS Lambda, a customer is allowed to configure the amount of memory allocated to a

serverless function. We ran this function for different memory sizes and studied the effect

of varying memory sizes on the performance of the function, i.e. run-time. Figure 4.1b

shows how the run-time of these serverless functions decreases with the increase of mem-

ory size allocated to the function. However, the marginal improvement in the run-time de-

creases as the memory increases. Figure 4.1c shows the cost of corresponding runs, which

60

is the product of price (Figure 4.1a) and run-time (Figure 4.1b)2. As shown in Figure 4.1c,

choosing too small a value or too large a value for memory can result in higher costs for

running the function3. This behavior is because the pricing model as exposed by the cloud

providers is tightly coupled with the amount of resources specified to execute the server-

less function (c.f. Figure 4.1a), and the dependency between memory and CPU resource

allocation – AWS Lambda allocates CPU power linearly in proportion to the amount of

memory configured [3]. We observed similar behavior when setting configurable param-

eters on Google Function. Running similar experiments on Apache OpenWhisk showed

that co-location has a significant impact on the run-time. Figure 4.1d shows the effect

of co-locating serverless functions on Apache OpenWhisk running on a machine with a

single CPU core.

The examples above highlights some factors that can affect the performance of run-

ning serverless functions. However, they are not the only factors. A recent study [80]

showed that the underlying infrastructure and resource provisioning can vary significantly

depending on multiple factors including function placement, cold starts, I/O and network

conditions, type of VMs/containers, and co-location with other functions. The user is

oblivious to all these other factors, and has only limited control over a few parameters

affecting performance, i.e. memory and processing power.

Given the issues raised above and the limited control a user has over the underlying

system parameters, finding the “best” configuration to run a function while minimizing

cost and meeting performance and delay constraints poses a new set of challenges. The

problem is even more challenging when a user is running a chain of interdependent func-

tions – where a user can still meet the performance requirement of the chain by trading off

the performance of some of the functions in the chain for lower cost – and when a user is

2Note that a small difference in run-time translates to a larger difference in cost.
3Our results are consistent with recent studies [49] on the cost of executing serverless functions.

61

presented with the option to pick between multiple locations, i.e. edge and core [19] [20]

[39].

In this chapter we present COSE, a framework that uses Bayesian Optimization to

statistically learn the relationship between cost/run-time and unseen configurations of a

serverless function. Using this learned relationship, henceforth referred to as performance

model of the serverless function, our framework is able to pick the best configuration for

a serverless function which not only minimizes the cost but also meets user-specified per-

formance criteria such as response time/delay of running a serverless function or chain of

these functions. Our framework is lightweight and has the ability to dynamically adapt to

changes in the execution time of a serverless function. It can be incorporated into an offer-

ing by cloud providers; it could be implemented as a value-added proposition by service

providers; or it could be directly leveraged by customers. We evaluate our framework not

only on a commercial cloud provider, where we successfully found optimal/near-optimal

configurations in as few as five samples4, but also over a wide range of simulated dis-

tributed cloud environments that confirm the efficacy of our approach.

4.2 System Description

Figure 4.2 provides an overview of our COSE framework. It consists of two main com-

ponents: a Performance Modeler component, which is responsible for learning the appli-

cation’s performance model, i.e. the relation between cost/run-time and configurations for

the serverless function, and the Config Finder component whose goal is to find the “best”

configuration that minimizes cost while satisfying the delay bound on the running time

of the serverless function. As indicated earlier, COSE can be incorporated into an offer-

ing by cloud providers; it could be implemented as a value-added proposition by service

4A configuration "sample" refers to a serverless function invocation at certain parameter values.

62

Serverless
 Apps

Mobile Apps

Web Apps

IoT devices

COSE

Performance
Modeler

Config
Finder

1. request

3: access logs

2. result

Cloud
Providers

4. get logs
{cost, execution

time}

5. modify
 configuration

Serverless
Function

Execution
Logs

function registration, response time

Figure 4.2: System overview

providers; or it could be directly leveraged by customers. For the rest of this work, we will

assume that our COSE framework has been adopted by a Service Provider, and through

standard APIs, a client registers her serverless function with the COSE service.

Figure 4.2 highlights the interactions between our COSE framework and its environ-

ment. Application clients, e.g. mobile and IoT devices, issue requests to the cloud provider

to invoke a serverless function. Once the function is invoked, a trace log, containing the

cost and execution time, is generated and stored. Our framework acts as a monitoring

service and utilizes the information from the trace to learn the performance model of the

function. After the learning phase converges, COSE uses Config Finder to find the “best”

configuration that minimizes cost while satisfying the delay bound on the running time of

the serverless function or a chain of functions. To account for delays associated with dif-

ferent locations/services supported by a designated cloud provider (e.g. Amazon Lambda’s

“edge” vs. “core”), a client reports the response times of its serverless function invoca-

tions to COSE5. If a change to the previous configuration is needed, COSE connects to the
5While this requires changes to the client, in practice, techniques to estimate the response time across

63

designated cloud provider using APIs to modify the configuration. Next, we discuss the

approaches and choices for the components of our COSE framework.

4.3 COSE: The Performance Modeler component

Our COSE framework has been entrusted to execute a single or a set of serverless functions

on a designated cloud provider. It has the ability to configure the parameters of the server-

less function, e.g. amount of memory, or the location of running the function by requesting

it from the Cloud Provider (CP). The goal is to learn the application’s performance model.

There are several ways to achieve this:

1. Exhaustive Search for the best cloud configuration: This method runs the serverless

function under all or a subset of possible configurations to find the configuration that

minimizes the cost [4]. This methodology has very high overhead. Amazon Lambda

alone has over 45 different memory types with a choice of location between “edge” and

“core”. To learn configurations across multiple CPs needs hundreds, if not thousands,

of function executions. Moreover, the performance of the function can vary depending

on the type of physical resources the function is deployed to execute on, and whether

the function is co-located with other functions. This can lead to repeating the exhaustive

search again to find the best configuration.

2. Algorithms for parameter descent: As an alternative to doing exhaustive search, this

method performs the search using parameter descent algorithms. The algorithms choose

parameter values in the direction of decreasing cost. For example, if the memory value

512MB gives lower cost than 448MB,6 the algorithm chooses a value greater than

geographically distributed clients can be incorporated without requiring any changes to the client.
6Recall that AWS memory options available from AWS Lambda increases or decreases in 64MB incre-

ments.

64

1

32

4 2880 MB

2752 MB

2816 MB

Figure 4.3: Example of AIAD getting stuck at a local minimum

512MB in anticipation of decreasing the cost further. Algorithms such as Additive In-

crease Additive Decrease (AIAD) and Gradient Descent, can be used. Such algorithms

have tendency to get stuck in local minima, which leads to sub-optimal configuration

for a serverless function.

Figure 4.3 illustrates a simple example where AIAD gets stuck at a local minimum.

AIAD, as its name implies, uses a small fixed amount – 64MB in our example – to either

increase or decrease requests for resources. Imagine a CP with two machines with

different hardware configurations: machine-1 and machine-2. The performance of the

serverless function will be different on machine-1 and machine-2 since these are shared

resources and the performance depends on the utilization of each machine. Initially,

AIAD requests a large memory configuration, e.g. 2816MB. Our serverless function

is placed on machine-1. Using AIAD, it descends in the direction of decreasing cost.

When the memory requested decreases from 2816 MB to 2752 MB (shown by arrow 1),

the CP decides – potentially due to cost savings from colocating it with other functions

– to place the serverless function on machine-2. Since the cost of execution is high

at memory 2752 MB, AIAD changes direction and asks for a higher memory value

65

of 2816 MB, which makes the CP place the function back on machine-1 (shown by

arrow 2). In the next step, AIAD will further go in this same cost-reducing direction

and ask for a higher memory value of 2880 MB (shown by arrow 3). However, the

cost becomes higher at 2880 MB when compared with 2816 MB, so AIAD will change

direction and in the next iteration, ask for 2816 MB (shown by arrow 4). The process

will keep repeating and AIAD will be stuck at a local minimum. We implemented

AIAD and Gradient Descent and tested them on commercial cloud providers.

Another drawback of parameter descent algorithms is that they do not continually learn

the underlying relation between cost/execution time and configuration, and so if the

underlying conditions or requirements change, the whole process needs to be repeated.

3. Statistical Learning for finding the best configuration: This approach uses a statistical

learning model to predict the performance of a serverless function under different con-

figurations. It involves sampling different configuration values to successfully model

the performance of the function and predict the configuration that will minimize the

cost. In this chapter, we use Bayesian Optimization as the statistical learning ap-

proach to find the “best” configuration for a serverless function.

4.3.1 Our Approach: Leveraging Bayesian Optimization

The objective of Bayesian Optimization (BO) is to optimize over a black-box function. In

our case, the function that we want to learn is the relationship between performance/cost

and all possible configurations, not to be confused with the serverless function/code itself

that we want to execute. Knowing this relationship, one can readily locate the configura-

tion that minimizes cost, or that meets a certain performance/delay requirement.

BO constructs a probabilistic model for a black-box function in a predefined parameter

space and exploits this model to make decisions about where to next sample/evaluate the

66

function. It uses the information from all previous observations of the black-box function

to find the next sample. The goal is to learn the black-box function in a few number of

samples. Compared to deterministic searching/learning, BO dynamically adapts its search

based on its current characterization and confidence interval of the prediction model. BO

dynamically picks the next sample that gives more information and avoids unnecessary

samples. BO stops searching when it has high confidence in the predicted model and the

expected improvement for the predicted model is small for new samples.

4.3.1.1 Problem definition

We formally define the cost minimization problem as follows: Given a cost g(x) to execute

a function on a CP premise, the objective is to find a configuration x that will minimize

the cost.

minimize
x∈C

g(x) (4.1)

where x is a particular configuration in the set of all possible configurations C. C is a hyper-

rectangle where each parameter in a configuration x is bounded {x ∈ Rd : ai ≤ xi ≤ bi}. It

is expensive to solve g(x) for all possible values of x ∈ C, so we use BO to intelligently

search for an appropriate solution with a small number of samples.

4.3.1.2 BO at work

BO observes the objective function g(x) at different sampled values. It models g(x) as

a stochastic process and computes a confidence interval for g(x) based on the samples

collected. Figure 4.4 shows a simple example where configuration x consists of a single

dimension, i.e., memory for a serverless function. The actual underlying function is given

by the solid blue line. The confidence interval is an area around the predicted function

where the actual function is passing through with 95% probability. In Figure 4.4a, there

67

0.50
0.75
1.00
1.25
1.50
1.75
2.00

Co
st

 g
(x

)
1e 4

Actual
Prediction

Observations
95% Conf. Inte.

1000 2000 3000 4000
Memory (MB)

0.0

2.5EI

1e 1
Next Sample

(a) Prediction after two samples. Next sample
with highest EI at 128 MB

0.50
0.75
1.00
1.25
1.50
1.75
2.00

Co
st

 g
(x

)

1e 4
Actual
Prediction

Observations
95% Conf. Inte.

1000 2000 3000 4000
Memory (MB)

0.0

0.5EI

1e 1
Next Sample

(b) Prediction after three samples. Next sample
with highest EI at 1728 MB

0.50
0.75
1.00
1.25
1.50
1.75
2.00

Co
st

 g
(x

)

1e 4
Actual
Prediction

Observations
95% Conf. Inte.

1000 2000 3000 4000
Memory (MB)

0

2EI

1e 2
Next Sample

(c) Prediction after four samples. Next sample
with highest EI at 1344 MB

0.50
0.75
1.00
1.25
1.50
1.75
2.00

Co
st

 g
(x

)

1e 4
Actual
Prediction

Observations
95% Conf. Inte.

1000 2000 3000 4000
Memory (MB)

0

2EI

1e 3
Next Sample

(d) Prediction after five samples. Next sample
with highest EI at 1216 MB

Figure 4.4: Bayesian Optimization example

are only two samples collected and the confidence interval is higher in the region further

away from the observed values. The black dashed line is the predicted objective function

of g(x). As BO collects more samples (in Figure 4.4b and 4.4c), the confidence interval

gets smaller and the prediction is closer to the actual values. BO intelligently samples the

next point to evaluate/observe g(x), based on the so-called acquisition function – Expected

Improvement (EI) in this case. EI is calculated for each possible configuration in the search

space. A configuration with the highest EI value is selected as the next sample. As shown

in the lower part of Figure 4.4a, the highest EI value is at 128 MB and this value is used as

68

a configuration value for the next run of the serverless function as shown in Figure 4.4b.

Bayesian Optimization has two key parts. The first part is a probabilistic surrogate

model, which consists of a prior over functions that express assumptions about the function

being optimized. The second part is choosing an acquisition function, which is used to

construct a utility function from the model posterior, allowing us to determine the next

configuration point to evaluate.

We use the Gaussian Process (GP) as prior for BO. The GP is widely accepted as a good

surrogate model for BO [74]. Moreover, the GP is the only choice that is computationally

tractable.

4.3.1.3 Choosing a Kernel and Mean function

We want to calculate the conditional distribution of function g(x) at multiple unobserved

points in the configuration space. The resulting distribution is a multivariate normal, with

a mean µ vector and covariance kernel that depends on the location of the unevaluated

points with respect to evaluated points and their measured values. The kernel should have

the property that, points closer in the input space are more strongly correlated. If ||x −

x′|| < ||x − x′′|| for some norm ||.||, then the kernel value
∑

o(x, x′) >
∑

o(x, x′′). We used

the Matern kernel, which is a commonly used kernel for BO. It does not require strong

smoothness and is a preferred model for practical functions [74]. We use the mean function

as µ(x) = E[g(x)].

4.3.1.4 Acquisition function

The acquisition function calculates the utility for sampling at each point in configuration

space and selects the point with highest utility as the next value to sample for objective

69

function g(x). The objective function g(x) will be sampled at

xt = argmaxx A(x | S 1:t−1)

where A is the acquisition function, S 1:t−1 = {(x1, y1), ..., (xt−1, yt−1)} are the t − 1 samples

drawn from g(x). The sample obtained can be a noisy sample yt = g(xt) + ε. This sample

is added to the previous sample space S 1:t = {S 1:t−1, (xt, yt)}.

Possible choices of acquisition functions are maximum probability of improvement

(MPI), expected improvement (EI), and upper confidence bound (UCB). We chose EI as it

is the most widely used acquisition function. EI has been shown to outperform MPI, and

unlike UCB, it does not require parameter tuning [74].

Expected Improvement (EI): Expected improvement picks a point from the parameter

space that maximizes the expected improvement over the current best point. It is defined

as

EI(x) = E max(g(x+) − g(x), 0)

where g(x+) is the value of the “best” configuration sample so far with the minimum cost.

Intuitively, we sample at a point x where we are most likely to see an improvement when

compared to the best configuration value we have seen so far.

EI can be evaluated in closed form using integration by parts, as described by Jones

et al. [51]. The resulting expression is

EI(x) =


(g(x+) − µ(x) − ω)Φ(Z) + σ(x)φ(Z) i f σ(x) > 0

0 i f σ(x) = 0
(4.2)

where Z =
g(x+)−µ(x)−ω

σ(x) . µ(x) and σ(x) are the mean and the standard deviation of the GP

posterior prediction at x. Φ and φ are the standard normal cumulative distribution function

70

and the standard normal probability density function, respectively. Intuitively, the first

term in Equation (2) is the exploitation term, and the second term is the exploration term.

The parameter ω is used to define the amount of exploration, where higher values lead

to more exploration, and lower values lead to exploitation. Specifically, increasing the

value of ω decreases the importance of improvement predicted by the GP posterior mean

µ(x) relative to the importance of potential improvement in regions of high prediction

uncertainty given by the large standard deviation σ(x) value.

4.3.2 Adapting BO for Serverless Functions

To make BO run efficiently and accurately for serverless functions, we made changes to

the classical BO. These changes are highlighted next.

(i) Initial Points: The choice of the initial points can guide the search for the optimal

solution in Bayesian Optimization. A random choice of initial points can lead to

longer convergence time. Since a serverless function tends to have a convex relation

between the cost of execution and the chosen configuration (cf. Figure 4.1c), we

chose the initial points as uniformly distributed in the search space. For this work,

we chose four initial points.

(ii) Reduce the Search Space: We reduce the search space by discretizing the possible

configuration parameters. BO has a computational complexity of O(C4), where C

is the number of data samples. We used the memory values and the cloud providers

as the set of parameters to choose from. We follow the choices of memory values

available to customers on Amazon Lambda as shown in Table 4.1. Possible memory

values that can be selected on Amazon Lambda are between 128MB and 3008MB,

with the offset of 64 MB, i.e., m ∈ {128MB, 192MB, 256MB, ..., 3008MB}. We

calculated EI only for these discrete values of possible input memory size, which

71

decreased the running time significantly. For this work, we have only two cloud

providers or two locations/services supported by a cloud provider, Edge-Cloud and

Core-Cloud, which are readily discrete.

(iii) Handling Noise: A cloud environment is shared and there are uncertainties intro-

duced because of the sharing of resources. Co-location of functions, cold-start,

hardware failures, resource-overuse, etc., can impact the execution time of a server-

less function running under the same configuration. Gaussian Process regression can

be extended naturally to observations with independent normally distributed noise

of known variance [70]. Since we have little or no knowledge of the underlying

cost-configuration relation, this variance is not known. We assume that the noise

is of common variance and it is included as a hyperparameter α of the Gaussian

Process. Finding the best value for α is outside the scope of this work. Our experi-

mental results show that α = 0.01 captures most uncertainties in the serverless cloud

platforms and we chose this value for our system.

(iv) Accurately Predicting Changing Performance Model: BO assumes that the target

performance model is not changing while the samples are being collected. However,

in practice, the target cost-configuration relation can change because of multiple

reasons, e.g. migration of the serverless function to a different machine by the cloud

provider, change in execution time based on the change in the input data to the

function, etc. To predict the dynamics in the target cost-configuration relation, we

keep a history of the configuration points sampled, and we discard the “old” sampled

points as we collect new samples using a sliding window approach. This helps

BO sample points again in the search space where it had sampled in the past, thus

capturing the changes in the target cost-configuration relation.

72

(v) Convergence Criteria: As mentioned earlier, we use Expected Improvement (EI)

as the convergence criterion for BO. When the EI for the next collected sample

is below 5%, we consider that BO has converged and we henceforth use our BO

predicted cost/run-time vs. configuration model to find the least-cost configuration

that satisfies the delay constraint on the serverless function.

Our COSE-based service provider runs BO to predict the performance model of the

serverless function, i.e. the black-box cost/run-time vs. configuration relation. It will keep

on sampling until the BO has converged on the performance model. Once converged,

COSE can use the predicted model to find the “best” configuration that satisfies the delay

constraint for a serverless function. In Section 4.4, we show how delay constraints for

serverless functions are met.

4.4 COSE: The Config Finder Component

Given the performance model of a serverless function, predicted by the Performance Mod-

eler, it is easy for the second component of our COSE framework, Config Finder, to locate

the configuration that minimizes the cost. However, real-world applications typically have

delay constraints on the running time of a serverless function or chain of functions. In

this section, we discuss how Config Finder picks the least-cost configurations that satisfy

delay constraints.

The cost of running a serverless function f is given by:

g f (x) = t f (x) × p f (x)

where t f (x) is the execution time of the function using configuration x, and p f (x) is the

price (cost per unit time) for running the function using configuration x. p f (x) is pro-

73

vided by the cloud provider and the predicted g f (x) is provided by the BO, so we can use

these values to calculate the predicted execution time t f (x) for a serverless function under

configuration x. The total time to run a function (end-to-end delay) is given by:

T f (x) = t f (x) + d(x)

where d(x) is the delay other than the execution time of a function (such as network,

queuing delay, etc.) Note that d(x) is specific to a cloud provider or location and we

estimate it by taking the difference T f (x) − t f (x) of multiple samples collected by BO for

the cloud providers or locations. This will help us predict the total time to run a serverless

function, i.e. response time, on any cloud provider for a given configuration value.

With all the information above, it is easy for a service provider to find a configuration

that satisfies the (end-to-end) delay constraint for a single serverless function. However,

the problem gets complicated when we have a chain of functions (service chain) that need

to execute one after another. All current serverless cloud providers support the chaining of

functions. The service provider needs to select a configuration for each serverless function

such that the cost to execute the service chain is minimized, while satisfying the delay

constraint on the running time of the whole chain. The Config Finder module in COSE

solves this problem. Using Integer Linear Programming (ILP), we formulate the problem

as an optimization problem. Config Finder solves the ILP to find the best configuration for

a chain of functions. Note that to solve for a single function, we consider the degenerate

case of a chain of size one. Next we formulate the optimization problem.

We assume that for each serverless function f in chain F, we choose the cloud provider

v ∈ V and the memory m ∈ M such that the total cost for placing the chain is minimized

and the delay constraint DF on service chain F is satisfied.

Define Y f
x ∈ {0,1} = 1 if function f ∈ F is deployed using configuration x ∈ C, 0

74

otherwise.

The objective of the Config Finder is to minimize the total price paid for the chain of

functions. This is given by:

minimize
(∑

f∈F

∑
x∈C

g f (x)Y f
x

)
(4.3)

subject to:

1) The delay requirement for the service chain is satisfied:

∑
f∈F

∑
x∈C

T f (x)Y f
x ≤ DF (4.4)

where T f (x) is the predicted end-to-end delay for running serverless function f ∈ F using

configuration x ∈ C.

2) A single configuration x ∈ C is selected for each serverless function in the chain.

∑
x∈C

Y f
x = 1 ∀ f ∈ F (4.5)

The solution to this problem yields a least-cost feasible solution, i.e. the resulting Y f
x ,

that gives the configuration x of each serverless function f in the chain. Note that one can

argue that ILP takes long to solve since it is NP-hard. However, since a chain typically

consists of a few functions (in our case, less than five), the total time to execute this ILP

on a CPLEX solver7 is only a few milliseconds. For chains consisting of a large number

of functions, a heuristic can be used to solve it. ILP can also be approximated using LP

relaxation for large chain sizes [10].

7 IBM ILOG CPLEX Optimizer,
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer

75

4.5 Experimental Results: Running COSE on Amazon Lambda

We test the proposed COSE system on AWS Lambda, a very popular serverless cloud

provider. We start by describing the class of functions that we tested on AWS Lambda.

4.5.1 Representative Functions

we test our COSE framework across four different representative functions for serverless

computing. These functions represent the different types of computation (combination of

I/O-, CPU-, network- and memory-intensive tasks) that a serverless application performs.

- CPU-intensive: This is a function that calculates the trigonometric function atan of

multiple numbers, hence making it more CPU-heavy function.

- Memory-intensive: This function applies a filter on a large image. This requires exten-

sive use of memory.

- I/O-intensive: This function performs multiple I/O related operations on a file, i.e., open-

ing, reading and closing a file.

- Network-intensive: This function downloads a large file from a server.

These functions were implemented in Python3.6/3.7 and deployed on AWS Lambda. Each

function was deployed as a separate AWS Lambda function. Figure 4.1b shows the run-

time for the CPU-intensive, memory-intensive and I/O-intensive functions under different

memory configurations. We do not show the results for the network-intensive function

since change in memory had little/no impact on the running time of the function. This

is because the network resources allocated to a function do not change as we change the

memory requested. Figure 4.1c shows the price-memory relation for CPU-, memory- and

I/O-intensive functions.

76

Even though CPU- and I/O-intensive functions do not use more than a certain amount

of memory, their performance is affected by the memory requested for the function. The

reason for that is, AWS Lambda assigns CPU share to each function in proportion to the

memory configured for the function. Hence more memory will assign more CPU cycles

to a function.

20 40 60 80 100
Samples

0

500

1000

1500

2000

2500

3000

M
em

or
y

(M
B)

(a) Parameters (Memory)

20 40 60 80 100
Samples

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Co
st

 ($
)

1e 5

(b) Cost

0 5 10 15 20
Execution Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

COSE
Max-Memory
Min-Memory

(c) Runtime of Serverless Function

Min-Memory COSE Max-Memory
2

3

4

5

6

Co
st

 fo
r 1

00
 E

xe
cu

tio
ns

 ($
)

1e 3

(d) Cost for running the 100 iterations

Figure 4.5: COSE performance on Amazon Lambda for I/O Intensive serverless function

4.5.2 Evaluation Results

We ran the CPU-intensive, I/O-intensive and memory-intensive functions shown in Fig-

ure 4.1 on Amazon Lambda using COSE. Since the behavior of these functions is very

77

similar to each other, we show results for only the I/O-intensive function here. To get an

estimate of the optimal memory value, i.e. the memory value that minimizes the price,

we ran the serverless functions multiple times across different memory values. As seen in

Figure 4.1c, the I/O-intensive function has the lowest price in the memory range 900MB-

1400MB.

We use COSE to find the optimal configuration for this function (with the goal of min-

imizing the cost, with no delay requirement on the execution time of the function). For

the first few requests, as shown in Figure 4.5a, COSE explores different memory values

and once it learns the underlying cost-memory relation, it starts suggesting optimal/near-

optimal memory values in the range 900-1400MB. The corresponding cost for individual

requests (function invocations) is given in Figure 4.5b. Again, COSE finds the optimal/near-

optimal cost for the function ($2.9× 10−5 as seen in Figure 4.1c for the I/O-intensive func-

tion).

To compare COSE with static configurations, we invoked the I/O-intensive function

100 times with the maximum and minimum memory values, possible on AWS Lambda,

to get the best/worst running times for the function, and also the corresponding cost. Fig-

ure 4.5c shows the running time of the serverless function when invoked with configu-

rations picked by COSE, maximum-memory=3008MB, and minimum-memory=128MB.

The minimum-memory configuration takes, on average, around 15 seconds to complete a

request, while the maximum-memory configuration takes, on average, 1 second to com-

plete the request. COSE performance is very close to maximum-memory. However, the

cost incurred when using COSE is even less than the cost for minimum-memory, as shown

in Figure 4.5d, due to lower execution time under COSE.

78

4.6 Evaluation in a Distributed Cloud Environment

While the results of running our framework on AWS Lambda highlight the utility of our

COSE framework, evaluating additional aspects of our framework presents a new set of

challenges because we have little or no knowledge about the underlying infrastructure,

the decisions made by the cloud provider regarding the allocation of resources, which

functions are co-located, if the function had cold-start or warm-start, and queuing, prop-

agation and other delays in the system. While it was possible in the previous section to

compare the performance of an I/O-intensive serverless function in a simple scenario by

exhaustively searching the memory space, and finding where the optimal memory value

for this function lies, this approach may not be practical for scenarios where we have mul-

tiple functions (and possibly chains of functions). To establish the efficacy of our COSE

framework, we model a distributed cloud provider and evaluate the framework across a set

of multiple functions using extensive simulations. Since in the simulated cloud environ-

ment we know the target function that COSE is trying to optimize, we can compare the

performance of COSE against the “ground truth”.

4.6.1 Modeling Cloud Provider

We model our cloud provider by adopting the following aspects of commercial cloud

providers.

i Co-location: We modeled the effect of co-location of functions by deploying the open-

source serverless platform, Apache OpenWhisk [2], on Chameleon Cloud [5]. We

deployed multiple functions on the same machine. The effect of co-location is given

in Figure 4.1d. We modeled this in the cloud provider.

ii Life-time and Cold-start: If a function is not executed for a certain period of time (i.e.

79

function life-time), the function is evicted by the cloud provider, and the subsequent

request for running the function will experience extra delay (i.e. function cold-start).

We use Amazon Lambda function’s life-time of 26 minutes and cold-start delay of

0.25 seconds, as shown by previous studies [80, 6].

iii Edge-cloud and core-cloud: To compare across different cloud providers or different

locations provided by one cloud provider, we model two types of clouds, edge-cloud

and core-cloud. We assume that edge-cloud is closer to the user and thus has a smaller

round trip delay. However, edge-cloud is more expensive when compared with the

core-cloud.

iv Dynamic serverless function: To test the adaptive performance of COSE, we run

COSE for a dynamic function whose execution time changes over time.

v Modeling price and execution time of a serverless function: We develop an analytical

model for the cost and execution time based on the experimental results of running

these functions on Amazon Lambda. The analytical model is explained in detail in

the next section.

4.6.2 Modeling cost and execution time

Our analytical model for cost and execution time of serverless functions is based on AWS

Lambda’s pricing and execution model.

Cloud provider’s pricing model: We use Amazon Lambda’s pricing model. Amazon

uses a linear pricing model, as shown in Figure 4.1a. We use this pricing model for the

core-cloud. Since the price for edge-cloud is higher than the core-cloud, we set the edge

resource price to be 1.5 times the price of resources at the core-cloud. This linear pricing

80

model is captured by the following equation for serverless function f :

p f (v,m) = K(v) × m (4.6)

where m is the memory used by function f , v ∈ V is the cloud provider, and K(v) is a

constant and its value depends on the cloud provider’s pricing.

Execution time model: The execution time for representative functions is shown in Fig-

ure 4.1b for Amazon Lambda. The execution time for these functions follows an expo-

nential decay. In other words, the running time of a function decreases as we increase the

memory requested for it. However, after a certain memory size, the change in running

time becomes too small or negligible. The execution time for function f is given by:

t f (v,m) = t f (v,mmin) + t f (v,mmax) × e−λ(m−mmin) + h(v) (4.7)

where t f (v,mmin) is the running time for function f at the lowest possible memory (mmin =

128MB for Amazon Lambda), t f (v,mmax) is the running time at the highest possible mem-

ory (mmax = 3008MB for Amazon Lambda), v is the cloud provider, and λ is the decay

constant. By changing t f (v,mmin), t f (v,mmax) and λ, we can fit the execution model for any

serverless function. The constant h(v) captures the delay due to cold-start and co-location,

and its value depends on the current state of the cloud provider.

Cost for running a serverless function: The total cost g f (v,m) for running function f

on cloud provider v ∈ V is given by the product of the price per second (p f (v,m)) and the

total execution time (t f (v,m)).

g f (v,m) = p f (v,m) × t f (v,m)

81

4.6.3 Simulation Results

Using the above models allows us to simulate a cloud provider that has two parameters to

be optimized, i.e. selection of location (edge vs. core) and memory value for deploying

a serverless function. Since we have more control over the execution model and resource

management, we evaluated the convergence and accuracy-related aspects of COSE. In

addition, we evaluated some unique scenarios, for example, dynamically changing the

underlying execution model to evaluate how well COSE adapts to changes. Our evaluation

showed that COSE can learn the optimal or near-optimal configurations for a serverless

function with as few as 13-15 samples and can adapt to changes well8. Also, COSE

showed significant cost savings without compromising on performance. We provide the

simulation parameters at [7].

Convergence: COSE uses Bayesian Optimization (BO) to predict the price function. A

small convergence time for BO means that COSE can quickly find the “best” configuration

that minimizes the price paid while satisfying the delay constraint. In this experiment, we

looked at how long it takes for BO to converge and find the underlying cost-configuration

relation. Since we are using a cloud provider model, we know the underlying performance

function. As explained in Section 4.3.1, we use expected improvement (EI) as the con-

vergence criterion. Figure 4.6a shows the CDF (taken over 100 runs) of the number of

configuration samples taken for BO to converge. We observed that BO can converge, 95%

of the time, with as few as 15 samples. In Figure 4.6b we show how EI decreases as

the number of configuration samples increases. The first few samples have the highest EI

value. However, as COSE takes more samples, the EI value rapidly decreases. With each

new sample, BO improves its understanding of the underlying performance function and

subsequent configuration samples contribute little to improving the prediction.
8We note that for a commercial cloud provider with one parameter, COSE was able to find a near-optimal

configuration in 5 samples

82

0 5 10 15 20
of samples taken to converge

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

(a) Convergence

0 20 40 60 80 100
of samples taken

0

10

20

30

40

50

Ex
pe

ct
ed

 Im
pr

ov
em

en
t (

%
)

(b) Expected Improvement

Figure 4.6: BO’s Convergence and EI

Configuration Selection: After BO converges, COSE starts picking the “best” possible

configuration for serverless functions using Config Finder. We used a function whose

execution model had an optimal configuration of {memory = 576MB, location = core-

cloud}. In Figures 4.7a and 4.7b, we show the configurations that COSE picked for each

request and their corresponding cost. For the first few requests (up to 15 requests), COSE

is exploring different configurations. After the BO in COSE converges, Config Finder

starts picking optimal/near-optimal configurations for the function, i.e. the corresponding

price paid of each serverless request is lowest.

Dynamicity: The performance of a serverless function can be affected by factors like co-

location, hardware, resource provisioning policy, etc. In case any of these factors changes,

the configurations that were optimal before the change may no longer be optimal. We

designed COSE so it is resilient in the face of such changes and is able to find new optimal

configurations. We tested COSE’s ability to adapt to a change in the underlying execution

model. We created 500 requests for a serverless function. The first 250 requests follow

a certain execution model and have certain optimal configurations. For the next 250 re-

quests, we change the execution model hence the optimal configurations. We observed that

83

20 40 60 80 100
Samples

0

500

1000

1500

2000

2500

3000
M

em
or

y
(M

B)
Memory Requested - Core
Memory Requested - Edge
Optimal Memory

(a) config={memory, cloud provider} selected for
each request

20 40 60 80 100
Samples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Co
st

 ($
)

1e 4
Cost Paid
Optimal Cost

(b) Cost paid for each request

Figure 4.7: Configuration with COSE

0 500 1000 1500 2000 2500
Error (MB)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Static
Static + Window
Dynamic + Window

Figure 4.8: COSE for serverless function with changing execution model

depending on the history, COSE can successfully unlearn the previous execution model,

learn the new model, and start predicting the new optimal configurations.

In Figure 4.8, we show the performance of COSE in terms of sample error in memory

for three scenarios. The sample error E s is defined as the difference between the sampled

memory and the optimal memory: E s = |ms − mo|, where ms is the memory being sam-

pled by BO and mo is the optimal memory. In the static case, the underlying function’s

execution model does not change, and COSE remembers the full history, hence it takes a

84

few samples for COSE to converge and the error is small. In the static+window case, the

underlying function’s execution model does not change, and COSE remembers a limited

history (last 40 samples). As BO loses historical data, the acquisition function periodi-

cally samples configuration points for exploration, and hence, there is high variability in

memory selection leading to the higher error value. In the third (dynamic+window) case,

COSE not only remembers a limited history but the serverless function’s execution model

also changes. We see the highest error in this scenario since COSE is constantly collecting

samples to adapt to the changing execution model, and it takes time proportional to the

history, to unlearn the previous execution model and learn the new one. That is a trade-off

that COSE can make: more history would yield less sampling, but it would be slow to

adapt to changes. A shorter history would result in more sampling, but COSE would adapt

to changes more quickly. In all three scenarios, COSE converges to optimal/near-optimal

values.

Delay Bounded Chaining: Serverless applications can have a chain of functions that

triggers one another, where the output of one function serves as input to the next. This

is called service chaining. Service chains usually have a delay constraint. As an exam-

ple, think of the login functionality of an application. The login process can comprise of

multiple serverless functions, i.e. getting user input, retrieving user information from a

database, evaluating credentials, and on success, showing appropriate options to the user.

To meet certain quality of experience, an application administrator may wish to complete

the whole login process within a certain amount of time. As each individual action is a

serverless function, picking the right configurations is critical to the performance of the

application and the cost of cloud usage. Here we show how COSE successfully finds the

optimal configurations for serverless functions comprising a delay-bounded chain.

In this experiment, each request is a service chain consisting of two or more functions.

85

102030405060
Delay Limit (sec)

0

2

4

6

8

Co
st

 ($
)

1e 4

(a) Cost as a function of delay bound on the
chain

1 2

(b) Configurations selected by COSE to
satisfy delay bounds

0 20 40 60
Delay Limit (sec)

0

10

20

30

40

50

60

Ac
tu

al
 D

el
ay

 (s
ec

)

(c) Delay bound on the chain vs actual delay

0 20 40 60
Pred Delay (sec)

0

10

20

30

40

50

60
Ac

tu
al

 D
el

ay
 (s

ec
)

(d) Predicted delay vs actual delay

Figure 4.9: Delay bounded chaining of serverless functions

Each function has a different execution model, hence different optimal configuration. As

explained in Section 4.4, COSE uses BO’s prediction of price and execution time to for-

mulate the problem as an Integer Linear Program (ILP). COSE solves this ILP to find a

suitable configuration for each function in the chain. Initially, we let the BO collect con-

figuration samples and wait for it to converge. Once BO has converged, we observe the

“best” configuration selected by COSE for each function in the chain such that the total

(end-to-end) delay of the chain satisfies the delay bound. Although we tested COSE for

different chain sizes, we show results for the service chain of size two for simplicity.

In Figure 4.9a, we look at how the delay bound affects the cost of cloud-usage. For

86

loose delay requirement, COSE finds the “best” location and memory for both functions,

hence lower cost. As the delay requirement becomes more stringent, COSE has to make a

decision of either increasing the memory available to a function or placing it on the edge-

cloud to reduce the delays. Both of these choices will raise the cost and that is why we see

an increase in the cost as the delay bound becomes tighter. In Figure 4.9b, we show the

corresponding configurations selected for varying delay bound. Initially, because of higher

delay bound, COSE runs both functions on the core-cloud to lower the usage cost and

selects the memory that lowers the cost. However, as the delay bound becomes smaller,

COSE has to increase the memory available to either function or change the location where

they are deployed. As the delay bound reduces to 42 seconds, COSE starts increasing the

memory available to the second function. At around 24 seconds of delay bound, COSE

cannot keep both functions on the core-cloud to meet the delay requirement. As shown

by arrow 1, COSE moves the first function to the edge-cloud and decreases the memory

needed for the second function on the core-cloud. As the delay bound becomes even

smaller, COSE moves both functions to the edge-cloud as shown by arrow 2 at around 15

seconds. Since the edge-cloud has lower delays, COSE selects smaller memory values,

compared to previous values, to minimize the cost while fulfilling the delay requirement.

In Figure 4.9c, we look at the actual delay experienced by the chain. COSE meets the

delay requirement of the chain under most delay bounds. When the delay bound is higher

than 42 seconds, we do not see an increase in the actual delay experienced by the chain

because at the optimal configurations, the chain’s total delay is 42 seconds. As explained

in Section 4.4, COSE uses its estimation of delays in selecting the configurations of the

serverless functions in the chain. It is critical that the predicted delay is close to the actual

delay. Figure 4.9d shows that the actual delay experienced by the chain is very close to the

delay predicted by COSE.

87

4.7 Related Work

As serverless computing is gaining popularity, there has been a significant amount of re-

search that measures different aspects of the serverless paradigms [13, 14]. Detailed stud-

ies on different commercial serverless platforms aim to characterize and understand the

architecture and resource management by the cloud provider [80, 59, 58]. By having a bet-

ter insight into the cloud provider’s serverless platform, users can tailor their applications

to efficiently use the cloud provider. In COSE, our focus is on modeling the application

behavior at different configurations, regardless of the underlying architecture and resource

management scheme used by cloud providers.

Commercial cloud providers have developed systems that suggest suitable configura-

tion parameters to the user for running her tasks. Google provides a machine type rec-

ommendation system [15] that helps to maximize the resource utilization of user VM

instances. AWS provides auto-scaling service [12] to the users for EC2 instances. Cloud

provider’s cluster managing systems, such as Google’s Borg [78], Mesos [46], Paragon

[32] and Quasar [33], allow the user to specify the need for the application and the system

finds the best configuration. Currently, cloud providers do not provide a resource config-

uration facility for serverless computing. Moreover, to port any of these techniques for

serverless computing, the user needs the complete knowledge of the underlying cloud in-

frastructure. Since this information is not available to the user, these techniques cannot be

applied by the user for serverless computing.

Systems have been developed for users to infer the cost-performance relationship

across different cloud configurations. CherryPick [24] uses Bayesian Optimization to pre-

dict suitable VM configuration for an application in a cloud provider. CloudCmp [55]

recommends a suitable cloud provider for running user application. Both CherryPick and

CloudCmp are offline tools that are helpful to users before they deploy their applications.

88

Ernest [76] builds the performance model of machine learning applications. WebPerf [50]

estimates the latency model of a web application. ARIA [77] builds the job profile and

performance model for MapReduce and Hadoop applications. Unlike the large body of

prior work, which focus on a particular application, the COSE framework can be used

for any application running as a serverless function. Moreover, the aforementioned ap-

proaches perform resource configuration at the beginning of deployment/execution of an

application, while COSE monitors the application continually and adapts its configuration

dynamically.

4.8 Summary

In this chapter, we present COSE, a statistical learning based configuration finder for

serverless functions. COSE uses Bayesian Optimization to learn the cost and execution

time model for serverless functions across unseen configuration values. COSE supports

function chaining, and has the ability to dynamically adapt to changes in the execution time

of serverless functions. Our results on commercial cloud and simulated distributed cloud

environments show that COSE provides optimal/near-optimal configurations for serverless

functions in a few configuration samples.

Chapter 5

Conclusion and Research Directions

5.1 Summary of Contributions

In this thesis, we studied the problem of resource orchestration and management of appli-

cation functions over virtualized cloud infrastructures. Initially, we proposed decomposing

applications into application functions that can be placed on the edge network. We also

developed a workload model that consists of service chains with varying capacity require-

ments as the traffic flow traverses its chain. We formulated a binary integer optimization

problem whose objective is to minimize the cost of deploying these service chains over

the edge network, while satisfying their high throughput and ultra-low latency require-

ments. We also introduced a fast heuristic to solve the problem. Our extensive evaluations

demonstrate the benefits of managing virtual service chains (by distributing them over the

edge network) compared to a baseline “middlebox” approach (where all services are run

on one host) in terms of overall admissible virtual capacity. Moreover, we observe signif-

icant gains when deploying a small number of mmWave links that complement the Wire

physical infrastructure.

Next, we present COSE, a statistical learning based configuration finder for application

virtual functions. COSE uses Bayesian Optimization to learn the cost and execution time

model for serverless functions across unseen configuration values. COSE supports func-

tion chaining, and has the ability to dynamically adapt to changes in the execution time of

89

90

serverless functions. Our results on commercial cloud and simulated distributed cloud en-

vironments show that COSE provides optimal/near-optimal configurations for serverless

functions in a few configuration samples.

5.2 Open Research Directions

Application decomposition and virtual function placement can be used for other envi-

sioned future applications, e.g., healthcare, and the control of robots and drones. We

believe this work is a first step toward further analysis and implementation of edge cloud-

based applications.

In this work, we showed the benefits of using mmWave links. However, finding the

optimal placement of mmWave links such that the gains are maximized is an exciting

problem. Long-range mmWave links can be formed by introducing repeater nodes. This is

especially helpful for networks where node density is low.

Configuration finder COSE can be used as a service over larger scale multi-cloud

providers. This will enable studying a wide range of workloads, application requirements,

and cloud resource provisioning and pricing policies. We intend to extend our COSE simu-

lator to accommodate more complex scenarios, such as service graphs. Note that although

we did not test COSE for functions with varying input workload, we believe COSE can

be used for such scenarios if the input workload can be classified (e.g., based on size) and

COSE is trained for each class separately.

Bibliography

[1] Amazon Lambda Pricing Model. https://aws.amazon.com/lambda/pricing/.

[2] Apache OpenWhisk. https://openwhisk.apache.org/.

[3] AWS Lambda Function Configuration. https://docs.aws.amazon.com/
lambda/latest/dg/resource-model.html.

[4] AWS Lambda Power Tuning. https://github.com/alexcasalboni/
aws-lambda-power-tuning.

[5] Chameleon Cloud. https://www.chameleoncloud.org.

[6] Cold Starts in AWS Lambda. https://mikhail.io/serverless/coldstarts/
aws/.

[7] COSE Simulation Parameters. https://bit.ly/2HPwY3n.

[8] Google Function Pricing Model. https://cloud.google.com/functions/
pricing.

[9] Google’s Stadia. http://stadia.com.

[10] LP Relaxation and Rounding. http://pages.cs.wisc.edu/~shuchi/courses/
787-F09/scribe-notes/lec10.pdf.

[11] Report ITU-R M.[IMT-2020.TECH PERF REQ] - Minimum requirements related to
technical performance for IMT-2020 radio interface(s).

[12] Amazon Auto Scaling. https://aws.amazon.com/ec2/autoscaling/, 2018.

[13] AWS Lambda CPU allocation . https://engineering.opsgenie.com/
how-does-proportional-cpu-allocation-work-with-aws-lambda-41cd44da3cac,
2018.

[14] Chaos of AWS Lambda. https://blog.symphonia.io/
the-occasional-chaos-of-aws-lambda-runtime-performance-880773620a7e,
2018.

[15] Google Cloud Recommendations. https://cloud.google.com/compute/docs/
instances/apply-sizing-recommendations-for-instances, 2018.

https://aws.amazon.com/lambda/pricing/
https://openwhisk.apache.org/
https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://www.chameleoncloud.org
https://mikhail.io/serverless/coldstarts/aws/
https://mikhail.io/serverless/coldstarts/aws/
https://bit.ly/2HPwY3n
https://cloud.google.com/functions/ pricing
https://cloud.google.com/functions/ pricing
http:// stadia.com
http://pages.cs.wisc.edu/~shuchi/courses/787-F09/scribe-notes/lec10.pdf
http://pages.cs.wisc.edu/~shuchi/courses/787-F09/scribe-notes/lec10.pdf
https://aws.amazon.com/ec2/autoscaling/
https://engineering.opsgenie.com/how-does-proportional-cpu-allocation-work-with-aws-lambda-41cd44da3cac
https://engineering.opsgenie.com/how-does-proportional-cpu-allocation-work-with-aws-lambda-41cd44da3cac
https://blog.symphonia.io/the-occasional-chaos-of-aws-lambda-runtime-performance-880773620a7e
https://blog.symphonia.io/the-occasional-chaos-of-aws-lambda-runtime-performance-880773620a7e
https://cloud.google.com/compute/ docs/instances/apply-sizing-recommendations-for-instances
https://cloud.google.com/compute/ docs/instances/apply-sizing-recommendations-for-instances

92

[16] Serverless Monitoring - Dashbird. https://dashbird.io/, 2018.

[17] Serverless Monitoring - SignalFx. https://www.signalfx.com/solutions/
serverless-monitoring/, 2018.

[18] Serverless Monitoring - Thundra. https://docs.thundra.io/, 2018.

[19] AWS Lambda at Edge. https://aws.amazon.com/lambda/edge/, 2019.

[20] OpenWhisk at Edge. https://github.com/kpavel/openwhisk-light, 2019.

[21] Addis, B., Belabed, D., Bouet, M., and Secci, S. Virtual network functions placement
and routing optimization. In IEEE CloudNet (2015).

[22] Agarwal, S., Kandula, S., Bruno, N., Wu, M.-C., Stoica, I., and Zhou, J. Re-
optimizing data-parallel computing. In Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation (Berkeley, CA, USA, 2012),
NSDI’12, USENIX Association, pp. 21–21.

[23] Akhtar, N., Matta, I., Raza, A., Goratti, L., Braun, T., and Esposito, F. Vir-
tual Function Placement and Traffic Steering over 5G Multi-Technology Networks.
In 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft)
(June 2018), pp. 114–122.

[24] Alipourfard, O., Liu, H. H., Chen, J., Venkataraman, S., Yu, M., and Zhang, M.
Cherrypick: Adaptively unearthing the best cloud configurations for big data analyt-
ics. In 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17) (Boston, MA, 2017), USENIX Association, pp. 469–482.

[25] AT&T. Enabling Mobile Augmented and Virtual Reality with 5G Networks.

[26] Azar, Y., Wong, G. N., Wang, K., Mayzus, R., Schulz, J. K., Zhao, H., Gutierrez,
F., Hwang, D., and Rappaport, T. S. 28 GHz propagation measurements for outdoor
cellular communications using steerable beam antennas in New York city. In IEEE
ICC) (June 2013).

[27] Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell, N.,
Muthusamy, V., Rabbah, R., Slominski, A., et al. Serverless computing: Current
trends and open problems. In Research Advances in Cloud Computing. Springer,
2017, pp. 1–20.

[28] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., andWarfield, A. Xen and the Art of Virtualization. In ACM SIGOPS
operating systems review (2003), vol. 37, ACM, pp. 164–177.

https://dashbird.io/
https://www.signalfx.com/solutions/serverless-monitoring/
https://www.signalfx.com/solutions/serverless-monitoring/
https://docs.thundra.io/
https://aws.amazon.com/lambda/edge/
https://github.com/kpavel/openwhisk-light

93

[29] Cai, H., and Chung, T. Improving the Quality of High Dynamic Range Images.
Lighting Research & Technology 43, 1 (2011), 87–102.

[30] Castro, P., Ishakian, V., Muthusamy, V., and Slominski, A. Serverless programming
(function as a service). In Distributed Computing Systems (ICDCS), 2017 IEEE 37th
International Conference on (2017), IEEE, pp. 2658–2659.

[31] Chowdhury, N. M. M. K., Rahman, M. R., and Boutaba, R. Virtual network em-
bedding with coordinated node and link mapping. In IEEE INFOCOM 2009 (April
2009), pp. 783–791.

[32] Delimitrou, C., and Kozyrakis, C. Qos-aware scheduling in heterogeneous datacen-
ters with paragon. ACM Trans. Comput. Syst. 31, 4 (Dec. 2013), 12:1–12:34.

[33] Delimitrou, C., and Kozyrakis, C. Quasar: Resource-efficient and qos-aware cluster
management. In Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems (New York, NY, USA,
2014), ASPLOS ’14, ACM, pp. 127–144.

[34] Docker. https://www.docker.com/, 2018.

[35] Facebook Terragraph: Solving the Urban Bandwidth Challenge. https://
terragraph.com/.

[36] Fayazbakhsh, S. K., Sekar, V., Yu, M., and Mogul, J. C. FlowTags: Enforcing
Network-wide Policies in the Presence of Dynamic Middlebox Actions. In ACM
SIGCOMM - HotSDN (2013).

[37] Fischer, A., Botero, J. F., Beck, M. T., de Meer, H., and Hesselbach, X. Virtual
Network Embedding: A Survey. IEEE Communications Surveys Tutorials 15, 4
(Fourth 2013), 1888–1906.

[38] Fox, G. C., Ishakian, V., Muthusamy, V., and Slominski, A. Status of serverless
computing and function-as-a-service (faas) in industry and research. arXiv preprint
arXiv:1708.08028 (2017).

[39] Glikson, A., Nastic, S., and Dustdar, S. Deviceless edge computing: Extending
serverless computing to the edge of the network. In Proceedings of the 10th ACM In-
ternational Systems and Storage Conference (New York, NY, USA, 2017), SYSTOR
’17, ACM, pp. 28:1–28:1.

[40] Google. Google Maps.

[41] Greengrass, A. https://aws.amazon.com/greengrass/, 2018.

https://www.docker.com/
https://terragraph.com/
https://terragraph.com/
https://aws.amazon.com/greengrass/

94

[42] Guo, L., Pang, J., and Walid, A. Dynamic Service Function Chaining in SDN-
enabled networks with middleboxes. In IEEE ICNP (2016).

[43] Hahne, E. L., Choudhury, A. K., and Maxemchuk, N. F. Improving the fairness of
distributed-queue-dual-bus networks. In Proceedings. IEEE INFOCOM 90: Ninth
Annual Joint Conference of the IEEE Computer and Communications Societies The
Multiple Facets of Integration (June 1990), pp. 175–184 vol.1.

[44] Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-Dusseau,
A. C., and Arpaci-Dusseau, R. H. Serverless computation with openlambda. In 8th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16) (Denver, CO,
2016), USENIX Association.

[45] Herodotou, H., Dong, F., and Babu, S. No one (cluster) size fits all: Automatic clus-
ter sizing for data-intensive analytics. In Proceedings of the 2Nd ACM Symposium on
Cloud Computing (New York, NY, USA, 2011), SOCC ’11, ACM, pp. 18:1–18:14.

[46] Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D., Katz, R.,
Shenker, S., and Stoica, I. Mesos: A platform for fine-grained resource sharing in
the data center. In Proceedings of the 8th USENIX Conference on Networked Sys-
tems Design and Implementation (Berkeley, CA, USA, 2011), NSDI’11, USENIX
Association, pp. 295–308.

[47] Hu, Y., Patel, M., Sabella, D., Sprecher, N., and Young, V. Mobile edge comput-
ing:A key technology towards 5G. ETSI W. Paper 11 (2015).

[48] Inführ, J., and Raidl, G. R. Introducing the virtual network mapping problem with
delay, routing and location constraints. In Proceedings of the 5th International Con-
ference on Network Optimization (Berlin, Heidelberg, 2011), INOC’11, Springer-
Verlag, pp. 105–117.

[49] Ishakian, V., Muthusamy, V., and Slominski, A. Serving deep learning models in a
serverless platform. In Cloud Engineering (IC2E), 2018 IEEE International Confer-
ence on (2018), IEEE, pp. 257–262.

[50] Jiang, Y., Sivalingam, L. R., Nath, S., and Govindan, R. Webperf: Evaluating what-if
scenarios for cloud-hosted web applications. In Proceedings of the 2016 ACM SIG-
COMM Conference (New York, NY, USA, 2016), SIGCOMM ’16, ACM, pp. 258–
271.

[51] Jones, D. R., Schonlau, M., and Welch, W. J. Efficient global optimization of ex-
pensive black-box functions. J. of Global Optimization 13, 4 (Dec. 1998), 455–492.

[52] Jurgelionis, A., Fechteler, P., Eisert, P., Bellotti, F., David, H., Laulajainen, J. P.,
Carmichael, R., Poulopoulos, V., Laikari, A., Perälä, P., De Gloria, A., and

95

Bouras, C. Platform for distributed 3d gaming. Int. J. Comput. Games Technol.
(2009).

[53] Kolliopoulos, S. G., and Stein, C. Improved approximation algorithms for unsplit-
table flow problems. In Proceedings 38th Annual Symposium on Foundations of
Computer Science (Oct 1997), pp. 426–436.

[54] Lab, F. C. Facebook demonstrates record-breaking data rate using millimeter-wave
technology. https://code.fb.com/connectivity/, Nov 2016.

[55] Li, A., Yang, X., Kandula, S., and Zhang, M. Cloudcmp: Comparing public cloud
providers. In Proceedings of the 10th ACM SIGCOMM Conference on Internet Mea-
surement (New York, NY, USA, 2010), IMC ’10, ACM, pp. 1–14.

[56] Limits, A. L. https://docs.aws.amazon.com/lambda/latest/dg/limits.
html, 2018.

[57] Liu, W., Xiang, Y., Ma, S., and Tang, X. Completing virtual network embedding all
in one mathematical programming. In 2011 International Conference on Electronics,
Communications and Control (ICECC) (Sep. 2011), pp. 183–185.

[58] Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., and Pallickara, S. Serverless
computing: An investigation of factors influencing microservice performance. In
2018 IEEE International Conference on Cloud Engineering (IC2E) (April 2018),
pp. 159–169.

[59] McGrath, G., and Brenner, P. R. Serverless computing: Design, implementation,
and performance. In 2017 IEEE 37th International Conference on Distributed Com-
puting Systems Workshops (ICDCSW) (June 2017), pp. 405–410.

[60] Medina, A., Lakhina, A., Matta, I., and Byers, J. Brite: An approach to universal
topology generation. In MASCOTS ’01 (2001), IEEE Computer Society.

[61] Mehraghdam, S., Keller, M., and Karl, H. Specifying and placing chains of virtual
network functions. In IEEE CloudNet (2014).

[62] Montero, R. S., Rojas, E., Carrillo, A. A., and Llorente, I. M. Extending the cloud
to the network edge. Computer 50, 4 (April 2017).

[63] Niu, Y., Li, Y., Jin, D., Su, L., and Vasilakos, A. V. A survey of millimeter wave
communications (mmwave) for 5g: opportunities and challenges. Wireless Networks
21, 8 (Nov 2015), 2657–2676.

[64] Parsec gaming. https://parsecgaming.com.

https://code.fb.com/connectivity/
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://parsecgaming.com

96

[65] Puri, A., and Tripakis, S. Algorithms for the Multi-constrained Routing Problem.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

[66] Qazi, Z. A., Tu, C.-C., Chiang, L., Miao, R., Sekar, V., and Yu, M. SIMPLE-fying
Middlebox Policy Enforcement Using SDN. In ACM SIGCOMM 2013.

[67] Qualcomm. Augmented and Virtual Reality: the First Wave of 5G Killer Apps.

[68] Rabbani, M. G., Esteves, R. P., Podlesny, M., Simon, G., Granville, L. Z., and
Boutaba, R. On tackling virtual data center embedding problem. In IFIP/IEEE IM
2013), pp. 177–184.

[69] Rangan, S., Rappaport, T. S., and Erkip, E. Millimeter-wave cellular wireless net-
works: Potentials and challenges. Proceedings of the IEEE 102, 3 (March 2014),
366–385.

[70] Rasmussen, C. E., andWilliams, C. K. I. Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press, 2005.

[71] Schrijver, A. Theory of Linear and Integer Programming. John Wiley & Sons, Inc.,
New York, NY, USA, 1986.

[72] Sherry, J., Hasan, S., Scott, C., Krishnamurthy, A., Ratnasamy, S., and Sekar,
V. Making middleboxes someone else’s problem: network processing as a cloud
service. In SIGCOMM ’12, Finland (2012), pp. 13–24.

[73] Singh, S., Kulkarni, M. N., Ghosh, A., and Andrews, J. G. Tractable model for rate
in self-backhauled millimeter wave cellular networks. IEEE JSAC 33 (Oct 2015).

[74] Snoek, J., Larochelle, H., and Adams, R. P. Practical bayesian optimization of
machine learning algorithms. In Proceedings of the 25th International Conference on
Neural Information Processing Systems - Volume 2 (USA, 2012), NIPS’12, Curran
Associates Inc., pp. 2951–2959.

[75] Trinh, T., Esaki, H., and Aswakul, C. Quality of service using careful overbooking
for optimal virtual network resource allocation. In The 8th Electrical Engineering/

Electronics, Computer, Telecommunications and Information Technology (ECTI) As-
sociation of Thailand - Conference 2011 (May 2011), pp. 296–299.

[76] Venkataraman, S., Yang, Z., Franklin, M., Recht, B., and Stoica, I. Ernest: Efficient
performance prediction for large-scale advanced analytics. In 13th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 16) (Santa Clara, CA,
2016), USENIX Association, pp. 363–378.

97

[77] Verma, A., Cherkasova, L., and Campbell, R. H. Aria: Automatic resource inference
and allocation for mapreduce environments. In Proceedings of the 8th ACM Inter-
national Conference on Autonomic Computing (New York, NY, USA, 2011), ICAC
’11, ACM, pp. 235–244.

[78] Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., and Wilkes, J.
Large-scale cluster management at google with borg. In Proceedings of the Tenth
European Conference on Computer Systems (New York, NY, USA, 2015), EuroSys
’15, ACM, pp. 18:1–18:17.

[79] Wang, J., Pan, J., Esposito, F., Calyam, P., Yang, Z., andMohapatra, P. Edge Cloud
Offloading Algorithms: Issues, Methods, and Perspectives. ACM Computing Surveys
PP (Oct 2018).

[80] Wang, L., Li, M., Zhang, Y., Ristenpart, T., and Swift, M. Peeking behind the
curtains of serverless platforms. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18) (Boston, MA, 2018), USENIX Association, pp. 133–146.

[81] Waxman, B. M. Routing of multipoint connections. IEEE Journal on Selected Areas
in Communications 6 (Dec 1988), 1617–1622.

[82] Weib, M., Huchard, M., Stohr, A., Charbonnier, B., Fedderwitz, S., and Jager,
D. S. 60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless
Transmission Up to 12.5 Gb/s. Journal of Lightwave Technology 26, 15 (Aug 2008),
2424–2429.

[83] Wolsey, L. A. Integer Programming. John Wiley & Sons, 1998.

[84] Yu, M., Yi, Y., Rexford, J., and Chiang, M. Rethinking virtual network embedding:
Substrate support for path splitting and migration. SIGCOMM Comput. Commun.
Rev. 38, 2 (Mar. 2008), 17–29.

[85] Zhang, Y., Beheshti, N., Beliveau, L., Lefebvre, G., Manghirmalani, R., Mishra,
R., Patneyt, R., Shirazipour, M., Subrahmaniam, R., Truchan, C., and Tatipamula,
M. StEERING: A software-defined networking for inline service chaining. In IEEE
ICNP (2013).

Curriculum Vitae of Nabeel Akhtar

Address 111 Cummington Mall
Department of Computer Science, Boston University
Boston, 02215, MA, US

Email nabeel@bu.edu

Website http://cs-people.bu.edu/nabeel/

Education PhD in Computer Science
· Boston University, USA, 2019
· Advisor: Prof. Ibrahim Matta

M.S. in Computer Science
· Koç University, Turkey, 2013
· Advisors: Prof. Oznur Ozkasap, Prof. Sinem Coleri Ergen

B.Sc. in Computer Science
· Lahore University of Management Science (LUMS), Pakistan, 2011

Publications Nabeel Akhtar, Ibrahim Matta, Ali Raza, Leonardo Goratti, Torsten Braun
and Flavio Esposito. “Managing Chains of Application Functions over
Multi-Technology Edge Networks.” Journal paper under submission.

Nabeel Akhtar, Ali Raza, Vatche Ishakian and Ibrahim Matta. “COSE:
Configuring Serverless Functions using Statistical Learning.” Conference
paper under submission.

Nabeel Akhtar, Ibrahim Matta, Ali Raza, Leonardo Goratti, Torsten Braun
and Flavio Esposito. “Virtual Function Placement and Traffic Steering
over 5G Multi-Technology Networks.” IEEE Conference on Network
Softwarization (NetSoft), 2018, Montreal, Canada, June 2018

Nabeel Akhtar, Ibrahim Matta, Ali Raza and Yuefeng Wang. “EL-SEC:
ELastic Management of SECurity Applications on Virtualized Infrastruc-
ture.” IEEE INFOCOM International Workshop on Computer and Net-
working Experimental Research Using Testbeds (CNERT), Honolulu, Hawaii,

99

USA. April 2018

Zhongliang Zhao, Eryk Jerzy Schiller, Eirini Kalogeiton, Torsten Braun,
Stiller Burkhard, Mevlut Turker Garip, Joshua Joy, Mario Gerla, Nabeel
Akhtar, Ibrahim Matta “Autonomic Communications in Software-Driven
Networks.” IEEE Journal on Selected Areas in Communications (JSAC),
2017

Nabeel Akhtar, Ibrahim Matta and Yuefeng Wang “Managing NFV us-
ing SDN and Control Theory.” IEEE/IFIP NOMS International Workshop
on Management of the Future Internet (ManFI), Istanbul, Turkey. April
2016

Yuefeng Wang, Ibrahim Matta and Nabeel Akhtar “Application-Driven
Network Management with ProtoRINA.” IEEE/IFIP Network Operations
and Management Symposium (NOMS 2016), Istanbul, Turkey, April 2016

Nabeel Akhtar, Sinem Coleri Ergen, and Oznur Ozkasap “Vehicle Mo-
bility and Communication Channel Models for Realistic and Efficient
Highway VANET Simulation.” IEEE Transactions on Vehicular Tech-
nology (TVT), vol. 64, no. 1, pp. 248-262. January 2015

Yuefeng Wang, Nabeel Akhtar and Ibrahim Matta “Programming Rout-
ing Policies for Video Traffic.” IEEE ICNP International Workshop on
Computer and Networking Experimental Research Using Testbeds (CN-
ERT), Raleigh, NC, USA. October 2014

Yuefeng Wang, Ibrahim Matta and Nabeel Akhtar “Experimenting with
Routing Policies Using ProtoRINA over GENI.” The Third GENI Re-
search and Educational Experiment Workshop (GREE), Atlanta, Georgia.
2014

Nabeel Akhtar, Oznur Ozkasap, and Sinem Coleri Ergen “Analysis of
VANET topology characteristics via realistic vehicle mobility and com-
munication channel models.” IEEE Wireless Communication and Net-
working Conference (WCNC), Shanghai, China. April 2013

Nabeel Akhtar, Sinem Coleri Ergen, and Oznur Ozkasap “Analysis of
Distributed Algorithms for Density Estimation in VANETs.” IEEE Vehic-
ular Networking Conference (VNC) , Seoul, Korea. Nov. 2012

	Introduction
	Background and Motivation
	Challenges
	Virtual Function Placement and Traffic Steering
	Configuring the Parameters of Virtual Functions

	Thesis Contributions
	Roadmap of thesis

	Related Work
	Virtual Function Placement and Traffic Steering
	Configuring Virtual Functions

	Virtual Function Placement and Traffic Steering
	Introduction
	Background and Related Work
	Placement
	Traffic Steering

	System Model
	Mathematical Model
	Variables
	BIP Formulation

	Evaluation Model, Parameters and Proposed Heuristic
	Edge Network Graphs
	Input Flow Parameters
	Proposed Heuristic

	Evaluation Results
	Summary

	Configuring Serverless Functions using Statistical Learning
	Introduction
	System Description
	COSE: The Performance Modeler component
	Our Approach: Leveraging Bayesian Optimization
	Adapting BO for Serverless Functions

	COSE: The Config Finder Component
	Experimental Results: Running COSE on Amazon Lambda
	Representative Functions
	Evaluation Results

	Evaluation in a Distributed Cloud Environment
	Modeling Cloud Provider
	Modeling cost and execution time
	Simulation Results

	Related Work
	Summary

	Conclusion and Research Directions
	Summary of Contributions
	Open Research Directions

	Bibliography
	Curriculum Vitae of Nabeel Akhtar

